On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
The eigenvalue problem on Monge-Amper non-linear system of differential equations in Hilbert space of vector-functions has been considered in the article. The connection of this problem with the well-known Sobolev-Alexandrian operator has been revealed and the finite multiplicity and the real ness of the eigenvalues have been proved. The eigenvalues and the system of eigen vector-functions are given in explicit form, when the domain is a unit circle.
@article{UZERU_1990_3_a0,
author = {G. V. Virabyan and G. A. Sargsian},
title = {On the spectral properties of the pencil of {Monge-Amper} non-linear equations in vector-functions spaces},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--7},
publisher = {mathdoc},
number = {3},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/}
}
TY - JOUR AU - G. V. Virabyan AU - G. A. Sargsian TI - On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 3 EP - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/ LA - ru ID - UZERU_1990_3_a0 ER -
%0 Journal Article %A G. V. Virabyan %A G. A. Sargsian %T On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1990 %P 3-7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/ %G ru %F UZERU_1990_3_a0
G. V. Virabyan; G. A. Sargsian. On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/