On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalue problem on Monge-Amper non-linear system of differential equations in Hilbert space of vector-functions has been considered in the article. The connection of this problem with the well-known Sobolev-Alexandrian operator has been revealed and the finite multiplicity and the real ness of the eigenvalues have been proved. The eigenvalues and the system of eigen vector-functions are given in explicit form, when the domain is a unit circle.
@article{UZERU_1990_3_a0,
     author = {G. V. Virabyan and G. A. Sargsian},
     title = {On the spectral properties of the pencil of {Monge-Amper} non-linear equations in vector-functions spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {3},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/}
}
TY  - JOUR
AU  - G. V. Virabyan
AU  - G. A. Sargsian
TI  - On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1990
SP  - 3
EP  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/
LA  - ru
ID  - UZERU_1990_3_a0
ER  - 
%0 Journal Article
%A G. V. Virabyan
%A G. A. Sargsian
%T On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1990
%P 3-7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/
%G ru
%F UZERU_1990_3_a0
G. V. Virabyan; G. A. Sargsian. On the spectral properties of the pencil of Monge-Amper non-linear equations in vector-functions spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_1990_3_a0/

[1] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. Mosk. matem. o-va, 9, 1960, 455–505 | MR | Zbl

[2] R. A. Aleksandrian, Ju. M. Berezanskii, V. A. Il’in, A. G. Kostjucenko et al., Partial Differential Equations, v. 105, Amer. Math. Soc. Transl. ser. 2, 1976 | DOI

[3] G. V. Virabyan, “O zadache Dirikhle dlya uravneniya Monzha-Ampera”, Uch. zapiski EGU, 1967, no. 1(164)

[4] G. V. Virabyan, G. A. Sargsyan, “O zadache Dirikhle dlya uravneniya Monzha-Ampera”, Uch. zapiski EGU, 1990, no. 1 | MR

[5] G. S. Akopyan, “O spektralnykh svoistvakh puchka differentsialnykh operatorov v prostranstve vektor-funktsii”, DAN Arm. SSR, LXX:2 (1980) | Zbl