Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1990_2_a3, author = {G. A. Sarkissian}, title = {On {Dirichlet's} inhomogeneous problem for biwave equation in the circle}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {28--36}, publisher = {mathdoc}, number = {2}, year = {1990}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/} }
TY - JOUR AU - G. A. Sarkissian TI - On Dirichlet's inhomogeneous problem for biwave equation in the circle JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 28 EP - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/ LA - ru ID - UZERU_1990_2_a3 ER -
%0 Journal Article %A G. A. Sarkissian %T On Dirichlet's inhomogeneous problem for biwave equation in the circle %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1990 %P 28-36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/ %G ru %F UZERU_1990_2_a3
G. A. Sarkissian. On Dirichlet's inhomogeneous problem for biwave equation in the circle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36. http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
[1] A. Huber, “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl
[2] R. Denchev, “O zadache Dirikhle dlya volnovogo uravneniya”, Dokl. AN CCCP, 127:3 (1959), 501–504 | MR | Zbl
[3] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl
[4] G. V Virabyan, “O spektre odnogo operatora i o zadache Dirikhle dlya uravneniya: $a^2u+ 4\dfrac{\partial^2}{\partial t^2}au +2\dfrac{\partial^2}{\partial t^2}=f(x,y,z,t)$”, DAN SSSR, 152:5 (1960)