On Dirichlet's inhomogeneous problem for biwave equation in the circle
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to Dlrichlet’s inhomogeneous boundary problem for biwave equation, considered in unit circle. The solution of this problem is obtained in explicit form.
@article{UZERU_1990_2_a3,
author = {G. A. Sarkissian},
title = {On {Dirichlet's} inhomogeneous problem for biwave equation in the circle},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {28--36},
year = {1990},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/}
}
TY - JOUR AU - G. A. Sarkissian TI - On Dirichlet's inhomogeneous problem for biwave equation in the circle JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 28 EP - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/ LA - ru ID - UZERU_1990_2_a3 ER -
G. A. Sarkissian. On Dirichlet's inhomogeneous problem for biwave equation in the circle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36. http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
[1] A. Huber, “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl
[2] R. Denchev, “O zadache Dirikhle dlya volnovogo uravneniya”, Dokl. AN CCCP, 127:3 (1959), 501–504 | MR | Zbl
[3] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl
[4] G. V Virabyan, “O spektre odnogo operatora i o zadache Dirikhle dlya uravneniya: $a^2u+ 4\dfrac{\partial^2}{\partial t^2}au +2\dfrac{\partial^2}{\partial t^2}=f(x,y,z,t)$”, DAN SSSR, 152:5 (1960)