On Dirichlet's inhomogeneous problem for biwave equation in the circle
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to Dlrichlet’s inhomogeneous boundary problem for biwave equation, considered in unit circle. The solution of this problem is obtained in explicit form.
@article{UZERU_1990_2_a3,
     author = {G. A. Sarkissian},
     title = {On {Dirichlet's} inhomogeneous problem for biwave equation in the circle},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {28--36},
     publisher = {mathdoc},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/}
}
TY  - JOUR
AU  - G. A. Sarkissian
TI  - On Dirichlet's inhomogeneous problem for biwave equation in the circle
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1990
SP  - 28
EP  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
LA  - ru
ID  - UZERU_1990_2_a3
ER  - 
%0 Journal Article
%A G. A. Sarkissian
%T On Dirichlet's inhomogeneous problem for biwave equation in the circle
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1990
%P 28-36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
%G ru
%F UZERU_1990_2_a3
G. A. Sarkissian. On Dirichlet's inhomogeneous problem for biwave equation in the circle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36. http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/

[1] A. Huber, “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl

[2] R. Denchev, “O zadache Dirikhle dlya volnovogo uravneniya”, Dokl. AN CCCP, 127:3 (1959), 501–504 | MR | Zbl

[3] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl

[4] G. V Virabyan, “O spektre odnogo operatora i o zadache Dirikhle dlya uravneniya: $a^2u+ 4\dfrac{\partial^2}{\partial t^2}au +2\dfrac{\partial^2}{\partial t^2}=f(x,y,z,t)$”, DAN SSSR, 152:5 (1960)