On Dirichlet's inhomogeneous problem for biwave equation in the circle
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to Dlrichlet’s inhomogeneous boundary problem for biwave equation, considered in unit circle. The solution of this problem is obtained in explicit form.
@article{UZERU_1990_2_a3,
     author = {G. A. Sarkissian},
     title = {On {Dirichlet's} inhomogeneous problem for biwave equation in the circle},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {28--36},
     year = {1990},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/}
}
TY  - JOUR
AU  - G. A. Sarkissian
TI  - On Dirichlet's inhomogeneous problem for biwave equation in the circle
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1990
SP  - 28
EP  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
LA  - ru
ID  - UZERU_1990_2_a3
ER  - 
%0 Journal Article
%A G. A. Sarkissian
%T On Dirichlet's inhomogeneous problem for biwave equation in the circle
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1990
%P 28-36
%N 2
%U http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/
%G ru
%F UZERU_1990_2_a3
G. A. Sarkissian. On Dirichlet's inhomogeneous problem for biwave equation in the circle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 28-36. http://geodesic.mathdoc.fr/item/UZERU_1990_2_a3/

[1] A. Huber, “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl

[2] R. Denchev, “O zadache Dirikhle dlya volnovogo uravneniya”, Dokl. AN CCCP, 127:3 (1959), 501–504 | MR | Zbl

[3] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl

[4] G. V Virabyan, “O spektre odnogo operatora i o zadache Dirikhle dlya uravneniya: $a^2u+ 4\dfrac{\partial^2}{\partial t^2}au +2\dfrac{\partial^2}{\partial t^2}=f(x,y,z,t)$”, DAN SSSR, 152:5 (1960)