Point differentiations of algebras of generalized analytical functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 19-27
Voir la notice de l'article provenant de la source Math-Net.Ru
For any natural $k$ (which can also be $\infty$) a quasimaximal semi-group $\Gamma_0$ has been constructed on the half axis, such that the space of point differentiations in non-idempotent characters of $\Gamma_0$ of the algebra $A(\Gamma_0)$ of generalized analytical functions be $k$-dimensional.
@article{UZERU_1990_2_a2,
author = {L. M. Hakobian},
title = {Point differentiations of algebras of generalized analytical functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {19--27},
publisher = {mathdoc},
number = {2},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1990_2_a2/}
}
TY - JOUR AU - L. M. Hakobian TI - Point differentiations of algebras of generalized analytical functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 19 EP - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1990_2_a2/ LA - ru ID - UZERU_1990_2_a2 ER -
%0 Journal Article %A L. M. Hakobian %T Point differentiations of algebras of generalized analytical functions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1990 %P 19-27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1990_2_a2/ %G ru %F UZERU_1990_2_a2
L. M. Hakobian. Point differentiations of algebras of generalized analytical functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1990), pp. 19-27. http://geodesic.mathdoc.fr/item/UZERU_1990_2_a2/