Transfer processes with an arbitrary degree law dependent coefficient in an isotropic space of arbitrary dimension. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1990), pp. 50-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper it is shown that when the temperature-conductivity (diffusion coefficient dependence on temperature (concentration) $C$ provides the parabolic operator monotony and besides that vanishes simultaneously with the temperature (concentration) (e. g. $g(c)=Ac^n, 1\leq n\infty$), then there exists a region for each moment of time, in which the exact solution vanishes, i. e. the heat (substance) propagates with a finite speed.
@article{UZERU_1990_1_a7,
author = {Yu. N. Hayrapetyan},
title = {Transfer processes with an arbitrary degree law dependent coefficient in an isotropic space of arbitrary dimension. {II}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {50--55},
publisher = {mathdoc},
number = {1},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1990_1_a7/}
}
TY - JOUR AU - Yu. N. Hayrapetyan TI - Transfer processes with an arbitrary degree law dependent coefficient in an isotropic space of arbitrary dimension. II JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 50 EP - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1990_1_a7/ LA - ru ID - UZERU_1990_1_a7 ER -
%0 Journal Article %A Yu. N. Hayrapetyan %T Transfer processes with an arbitrary degree law dependent coefficient in an isotropic space of arbitrary dimension. II %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1990 %P 50-55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1990_1_a7/ %G ru %F UZERU_1990_1_a7
Yu. N. Hayrapetyan. Transfer processes with an arbitrary degree law dependent coefficient in an isotropic space of arbitrary dimension. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1990), pp. 50-55. http://geodesic.mathdoc.fr/item/UZERU_1990_1_a7/