A variational-difference method for solving the Dirichlet’s problem for pseudodifferential elliptic equation of arbitrary order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1990), pp. 26-32
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we have obtained a variational-difference scheme, which solves the Dirichlet’s problem for $Au = f$, equations, where $A$ is a pseudodifferential operator according to a symbol $a(\xi)$, which satisfies the following condition: $c_1(1+|\xi|)^{\ast}\leq | a(\xi) \leq c_2(1+|\xi|)^{\ast}$. It has been proved that for the considered scheme the convergence speed order in the $\mathrm{H}_p(\Omega)$ space is equal to 1, and in the $L_2(\Omega)$ space it is $p+1$. The matrix of the obtained algebraic eqyation has a shape of a band with $2p+1$ width.
@article{UZERU_1990_1_a3,
author = {G. R. Pogosyan},
title = {A variational-difference method for solving the {Dirichlet{\textquoteright}s} problem for pseudodifferential elliptic equation of arbitrary order},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {26--32},
year = {1990},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1990_1_a3/}
}
TY - JOUR AU - G. R. Pogosyan TI - A variational-difference method for solving the Dirichlet’s problem for pseudodifferential elliptic equation of arbitrary order JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1990 SP - 26 EP - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_1990_1_a3/ LA - ru ID - UZERU_1990_1_a3 ER -
%0 Journal Article %A G. R. Pogosyan %T A variational-difference method for solving the Dirichlet’s problem for pseudodifferential elliptic equation of arbitrary order %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1990 %P 26-32 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_1990_1_a3/ %G ru %F UZERU_1990_1_a3
G. R. Pogosyan. A variational-difference method for solving the Dirichlet’s problem for pseudodifferential elliptic equation of arbitrary order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1990), pp. 26-32. http://geodesic.mathdoc.fr/item/UZERU_1990_1_a3/
[1] G. R. Pogosyan, “Variatsionno-raznostnaya skhema resheniya zadachi Dirikhle dlya ellipticheskikh psevdodifferentsialnykh uravnenii vtorogo poryadka”, Uchenye zap. EGU, 1989, no. 1, 21–28
[2] M. I. Vishik, G. I. Eskin, “Ellipticheskie uravneniya v svertkakh v ogranichennoi oblasti i ikh prilozheniya”, Usp. mat. nauk, 22:1 (1965), 15–76 | DOI | MR | Zbl
[3] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl
[4] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR