Processes with an arbitrary degree law dependence coefficient in an isotropic space with an arbitrary dimension (I)
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 57-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evaluation from above for the non-linear thermoconductivity equation’s exact solution is obtained for the case when temperature conductivity diffusion coefficient $(g)$ dependence on temperature (concentration $C$) is as follows: $g(C)=A C ^n$, where $(1\leq n\leq \infty, A=const).$
@article{UZERU_1989_3_a9,
     author = {Yu. N. Hayrapetyan},
     title = {Processes with an arbitrary degree law dependence coefficient in an isotropic space with an arbitrary dimension {(I)}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {57--64},
     year = {1989},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_3_a9/}
}
TY  - JOUR
AU  - Yu. N. Hayrapetyan
TI  - Processes with an arbitrary degree law dependence coefficient in an isotropic space with an arbitrary dimension (I)
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 57
EP  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_3_a9/
LA  - ru
ID  - UZERU_1989_3_a9
ER  - 
%0 Journal Article
%A Yu. N. Hayrapetyan
%T Processes with an arbitrary degree law dependence coefficient in an isotropic space with an arbitrary dimension (I)
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 57-64
%N 3
%U http://geodesic.mathdoc.fr/item/UZERU_1989_3_a9/
%G ru
%F UZERU_1989_3_a9
Yu. N. Hayrapetyan. Processes with an arbitrary degree law dependence coefficient in an isotropic space with an arbitrary dimension (I). Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 57-64. http://geodesic.mathdoc.fr/item/UZERU_1989_3_a9/

[1] L. Kollatts, Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969 | Zbl

[2] R. M. Redheffer, “Die Collatzsche Monotonie bei Anfangswerproblemen”, Arch. Rat. Mech. Anal., 14 (1963), 196–212 | DOI | Zbl

[3] V. N. Airapetyan, Yu. N. Airapetyan, “Otsenka resheniya nelineinogo uravneniya teploprovodnosti s koeffitsientom, lineino zavisyaschim ot temperatury”, Dokl. Akad. Nauk Arm. SSR, LXXVII:1 (1983), 40–44 | Zbl