Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1989_3_a2, author = {E. A. Mirzakhanyan}, title = {On an infinite dimensional generation of {Borsuk's} theorem on a boundless component}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {15--20}, publisher = {mathdoc}, number = {3}, year = {1989}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1989_3_a2/} }
TY - JOUR AU - E. A. Mirzakhanyan TI - On an infinite dimensional generation of Borsuk's theorem on a boundless component JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 15 EP - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1989_3_a2/ LA - ru ID - UZERU_1989_3_a2 ER -
%0 Journal Article %A E. A. Mirzakhanyan %T On an infinite dimensional generation of Borsuk's theorem on a boundless component %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1989 %P 15-20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1989_3_a2/ %G ru %F UZERU_1989_3_a2
E. A. Mirzakhanyan. On an infinite dimensional generation of Borsuk's theorem on a boundless component. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 15-20. http://geodesic.mathdoc.fr/item/UZERU_1989_3_a2/
[1] H. Stinrodi, S. Eilenberg, Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958
[2] V. G. Boltyanskii, “Ob odnom klasse otobrazhenii podmnozhestv gilbertova prostranstva”, Izv. AN Arm. SSR. Ser. matem., 9:2 (1974), 107–120 | MR | Zbl
[3] C. Leng, Vvedenie v teoriyu differentsiruemykh banakhovykh mnogoobrazii, Mir, M., 1967
[4] E. A. Mirzakhanyan, “Ob odnoi teoreme invariantnosti oblasti gilbertova prostranstva pri $K_0$-diffeomorfizmakh”, Uch. zapiski EGU, 1986, no. 2 | MR
[5] E. A. Mirzakhanyan, “O nekotorykh svoistvakh beskonechnomernykh gomotopicheskikh grupp podmnozhestv gilbertova prostranstva”, DAN ArmSSR, 79:1 (1984), 15–17 | MR | Zbl
[6] E. A. Mirzakhanyan, “O nekotorykh svoistvakh nepreryvno differentsiruemykh otobrazhenii podmnozhestv gilbertova prostranstva”, Uch. zap. EGU, 1986, no. 1 | MR
[7] E. A. Mirzakhanyan, “Ob odnom beskonechnomernom obobschenii teoremy Brauera o nepodvizhnoi tochke”, Uchen. zap. Erevansk. un-ta, 1987, no. 1, 14–17 | MR | Zbl