Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1989_2_a9, author = {Y. G. Youssif}, title = {The solution of the optimum stabilization problem of the cylindrical shell}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {135--138}, publisher = {mathdoc}, number = {2}, year = {1989}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/} }
TY - JOUR AU - Y. G. Youssif TI - The solution of the optimum stabilization problem of the cylindrical shell JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 135 EP - 138 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/ LA - ru ID - UZERU_1989_2_a9 ER -
%0 Journal Article %A Y. G. Youssif %T The solution of the optimum stabilization problem of the cylindrical shell %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1989 %P 135-138 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/ %G ru %F UZERU_1989_2_a9
Y. G. Youssif. The solution of the optimum stabilization problem of the cylindrical shell. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 135-138. http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/
[1] V. S. Sarkisyan, M. S. Gabrielyan, Dzh. Yusif, “Ob optimalnoi ustoichivosti ortotropioi pryamougolnoi plastinki”, Uch. zapiski EGU, 1987, no. 3, 37–42 | MR | Zbl
[2] S. A. Ambartsumyan, Teoriya anizotropnykh obolochek, ed. I. K. Snitko, Fizmatgiz, M., 1961, 384 pp. | MR
[3] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR
[4] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 21:4-6 (1960)
[5] by Колмогоров А.Н., Фомин С.В. Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR