The solution of the optimum stabilization problem of the cylindrical shell
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 135-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimum stabilization problem of the oscillations for an orthotropic rectangular cylindrical shell, fixed at the edges by hinges, has been studied. The shell becomes stable by means of supplementary control action on its upper surface. The problem has been solved by Fourier’s method, which gives an infinite system of second-order with ordinary differential equations and separable variables. The optimum control action for each equation has been determined. A similar problem for a rectangular orthotropic plate has been already considered [1].
@article{UZERU_1989_2_a9,
     author = {Y. G. Youssif},
     title = {The solution of the optimum stabilization problem of the cylindrical shell},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {135--138},
     publisher = {mathdoc},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/}
}
TY  - JOUR
AU  - Y. G. Youssif
TI  - The solution of the optimum stabilization problem of the cylindrical shell
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 135
EP  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/
LA  - ru
ID  - UZERU_1989_2_a9
ER  - 
%0 Journal Article
%A Y. G. Youssif
%T The solution of the optimum stabilization problem of the cylindrical shell
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 135-138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/
%G ru
%F UZERU_1989_2_a9
Y. G. Youssif. The solution of the optimum stabilization problem of the cylindrical shell. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 135-138. http://geodesic.mathdoc.fr/item/UZERU_1989_2_a9/

[1] V. S. Sarkisyan, M. S. Gabrielyan, Dzh. Yusif, “Ob optimalnoi ustoichivosti ortotropioi pryamougolnoi plastinki”, Uch. zapiski EGU, 1987, no. 3, 37–42 | MR | Zbl

[2] S. A. Ambartsumyan, Teoriya anizotropnykh obolochek, ed. I. K. Snitko, Fizmatgiz, M., 1961, 384 pp. | MR

[3] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR

[4] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 21:4-6 (1960)

[5] by Колмогоров А.Н., Фомин С.В. Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR