Periodic contact problem for elastic complex infinite plate with nonhomogeneous fastening
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A contact problem is considered in the paper for elastic piece-homogeneous infinite plate, consisting of two half-infinite plates with different elastic constants and strengthened by the periodic system with finite elastic nonhomogeneous fastening right-angled diameter section. In order to solve the problem it has been brought to a system of singular integral equation with Gilbert nuclear, whith is solved by means of quadratic formulae of Gauss-Chebishova type.
@article{UZERU_1989_2_a5,
     author = {A. N. Kushbakov},
     title = {Periodic contact problem for elastic complex infinite plate with nonhomogeneous fastening},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--41},
     publisher = {mathdoc},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_2_a5/}
}
TY  - JOUR
AU  - A. N. Kushbakov
TI  - Periodic contact problem for elastic complex infinite plate with nonhomogeneous fastening
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 35
EP  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_2_a5/
LA  - ru
ID  - UZERU_1989_2_a5
ER  - 
%0 Journal Article
%A A. N. Kushbakov
%T Periodic contact problem for elastic complex infinite plate with nonhomogeneous fastening
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 35-41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_2_a5/
%G ru
%F UZERU_1989_2_a5
A. N. Kushbakov. Periodic contact problem for elastic complex infinite plate with nonhomogeneous fastening. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 35-41. http://geodesic.mathdoc.fr/item/UZERU_1989_2_a5/

[1] E. Kh. Grigoryan, G. V. Oganisyan, “Ob odnoi kontaktnoi zadache dlya kusochno-odnorodnoi plastiny s konechnymi stringerami”, Mezhvuz. sbornik nauchnykh trudov. Mekhanika, 3, Izd-vo EGU, Erevan, 1984, 130–137

[2] R. Muki, E. Sternberg, “Peredacha nagruzki ot rastyagivaemogo poperechnogo sterzhnya k polubeskonechnoi uprugoi plastine”, Tr. Amer.obsch. inzh.-mekh., ser. E, 1968, no. 4, 124–135

[3] G. V. Oganisyan, “Ob odnoi periodicheskoi kontaktnoi zadachi dlya kusochno-odnorodnoi beskonechnoi plastiny”, Prochnost, zhestkost i tekhnologichnost izdelii iz kompozitsionnykh materialov, Mater. 2-oi Vsesoyuz. nauch.-tekhn. konf., v. 3, 1984, 5–8

[4] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, GIMFL, M., 1963 | MR

[5] G. V. Oganisyan, A.N. Kushbakov, Kontaktnaya zadacha dlya uprugoi kusochno-odnorodnoi beskonechnoi plastiny s neodnorodnymi nakladkami, Tr. KhSh nauchnoi konferentsii molodykh uchenykh, Dep. VINITI 27.12.88, No 9073-V88, Izd-vo Inst. mekhaniki AN USSR, Kiev, 1984

[6] A. V. Baiko, L. N. Karpenko, “Ob integralnom uravnenii zadachi dlya uprugoi polosy s razrezom”, PMM, 51:6 (1987), 1035–1040