On the solutions of some differential equations of fractional order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper differential equations of $D^{1/\rho}_{\infty}+\lambda y=f(x)$ type fractional order are discussed, where $\lambda>0,~\rho\geq 1,~ D^{1/\rho}_{\infty}$ is Veil’s operator. For $f(x)$ functions of some classes Cauchy type problem is produced and solved.
@article{UZERU_1989_2_a0,
author = {B. A. Sahakyan},
title = {On the solutions of some differential equations of fractional order},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--9},
year = {1989},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1989_2_a0/}
}
TY - JOUR AU - B. A. Sahakyan TI - On the solutions of some differential equations of fractional order JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 3 EP - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1989_2_a0/ LA - ru ID - UZERU_1989_2_a0 ER -
B. A. Sahakyan. On the solutions of some differential equations of fractional order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1989), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_1989_2_a0/
[1] M. M. Dzhrbashyan, “Rasshirenie kvazianaliticheskikh klassov Danzhua–Karlemana”, Izv. AN Arm. SSR, Matematika, 3:4 (1968), 171–248 | Zbl
[2] B. A. Saakyan, “Ob odnoi formule obrascheniya "preobrazovaniya tipa svertki””, Respublikanskaya nauchno-prakticheskaya konferentsiya po metodike prepodavaniya matematiki i mekhaniki v vuze (Tezisy dokl.), Erevan
[3] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966