On the non-stability of differential equation systems in case of small integral perturbations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of non-stability of the systems of non-linear stationary differential equations is considered when perturbating forces of small integral act on the system during finite time interval. Sufficient and necessary conditions are defined, when the linear differential equation systems are stable due to acting forces. Sufficient conditions are defined tor linear differential systems in case of which the system is non-stable for acting forces.
@article{UZERU_1989_1_a4,
     author = {M. S. Gabrielyan and S. G. Shahinyan},
     title = {On the non-stability of differential equation systems in case of small integral perturbations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {27--32},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a4/}
}
TY  - JOUR
AU  - M. S. Gabrielyan
AU  - S. G. Shahinyan
TI  - On the non-stability of differential equation systems in case of small integral perturbations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 27
EP  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a4/
LA  - ru
ID  - UZERU_1989_1_a4
ER  - 
%0 Journal Article
%A M. S. Gabrielyan
%A S. G. Shahinyan
%T On the non-stability of differential equation systems in case of small integral perturbations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 27-32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a4/
%G ru
%F UZERU_1989_1_a4
M. S. Gabrielyan; S. G. Shahinyan. On the non-stability of differential equation systems in case of small integral perturbations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 27-32. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a4/

[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950, 369–450

[2] S. G. Shaginyan, “Ob odnoi zadache teorii ustoichivosti”, Uchenye zapiski EGU, 1986, no. 2, 39–46 | MR | Zbl

[3] F. R. Gantmakher, Teoriya matrits, 4-e. izd., Nauka, M., 1988 | MR | Zbl