The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variation-difference scheme of the solution of Dirichlet’s problem is presented for the equation $Au+Bu=f$, where $A$ is an elliptic operator of the second order and $B$ is pseudodifferential operator arised by the symbol $b(\xi)$, satisfying the estimation $b(\xi)\leq C|\xi|, C >0$. It has been proved that the resulting scheme has first order convergence. In addition it has been established that the condition number of the resulting matrix has $O(h^{-2})$ order.
@article{UZERU_1989_1_a2,
     author = {G. R. Pogosyan},
     title = {The variation-difference scheme of solution of {Dirichlet{\textquoteright}s} problem for elliptic pseudodifferential equations of second order},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--17},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/}
}
TY  - JOUR
AU  - G. R. Pogosyan
TI  - The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 11
EP  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/
LA  - ru
ID  - UZERU_1989_1_a2
ER  - 
%0 Journal Article
%A G. R. Pogosyan
%T The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 11-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/
%G ru
%F UZERU_1989_1_a2
G. R. Pogosyan. The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 11-17. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/

[1] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl

[2] A. A. Oganesyan, L. A. Rukhovets, Variatsionno raznostnye metody resheniya ellipticheskikh uravnenii, AN Arm.SSR, Erevan, 1979

[3] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[4] Psevdodifferentsialnye operatory, Mir, M., 1967, 166–297 | MR