The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 11-17
Cet article a éte moissonné depuis la source Math-Net.Ru
The variation-difference scheme of the solution of Dirichlet’s problem is presented for the equation $Au+Bu=f$, where $A$ is an elliptic operator of the second order and $B$ is pseudodifferential operator arised by the symbol $b(\xi)$, satisfying the estimation $b(\xi)\leq C|\xi|, C >0$. It has been proved that the resulting scheme has first order convergence. In addition it has been established that the condition number of the resulting matrix has $O(h^{-2})$ order.
@article{UZERU_1989_1_a2,
author = {G. R. Pogosyan},
title = {The variation-difference scheme of solution of {Dirichlet{\textquoteright}s} problem for elliptic pseudodifferential equations of second order},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {11--17},
year = {1989},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/}
}
TY - JOUR AU - G. R. Pogosyan TI - The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 11 EP - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/ LA - ru ID - UZERU_1989_1_a2 ER -
%0 Journal Article %A G. R. Pogosyan %T The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1989 %P 11-17 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/ %G ru %F UZERU_1989_1_a2
G. R. Pogosyan. The variation-difference scheme of solution of Dirichlet’s problem for elliptic pseudodifferential equations of second order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 11-17. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a2/
[1] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl
[2] A. A. Oganesyan, L. A. Rukhovets, Variatsionno raznostnye metody resheniya ellipticheskikh uravnenii, AN Arm.SSR, Erevan, 1979
[3] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[4] Psevdodifferentsialnye operatory, Mir, M., 1967, 166–297 | MR