Chung’s theorem for triangular array of independent random variable
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 7-10
Cet article a éte moissonné depuis la source Math-Net.Ru
The law of iterated logarithm for maximum partial sums in triangular array of independent random variables has been established.
@article{UZERU_1989_1_a1,
author = {T. P. Kazanchyan},
title = {Chung{\textquoteright}s theorem for triangular array of independent random variable},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {7--10},
year = {1989},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/}
}
TY - JOUR AU - T. P. Kazanchyan TI - Chung’s theorem for triangular array of independent random variable JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 7 EP - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/ LA - ru ID - UZERU_1989_1_a1 ER -
T. P. Kazanchyan. Chung’s theorem for triangular array of independent random variable. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 7-10. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/
[1] K. L. Chung, “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl
[2] P. Erdös, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Am. Math. Soc., 52 (1946), 292–302 | DOI | Zbl
[3] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnosti”, Teoriya veroyatnostei i ee primeneniya, 1 (1956), 157–214 | DOI | MR | Zbl
[4] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | DOI | MR | Zbl