Chung’s theorem for triangular array of independent random variable
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The law of iterated logarithm for maximum partial sums in triangular array of independent random variables has been established.
@article{UZERU_1989_1_a1,
     author = {T. P. Kazanchyan},
     title = {Chung{\textquoteright}s theorem for triangular array of independent random variable},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {7--10},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/}
}
TY  - JOUR
AU  - T. P. Kazanchyan
TI  - Chung’s theorem for triangular array of independent random variable
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 7
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/
LA  - ru
ID  - UZERU_1989_1_a1
ER  - 
%0 Journal Article
%A T. P. Kazanchyan
%T Chung’s theorem for triangular array of independent random variable
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 7-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/
%G ru
%F UZERU_1989_1_a1
T. P. Kazanchyan. Chung’s theorem for triangular array of independent random variable. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 7-10. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a1/

[1] K. L. Chung, “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[2] P. Erdös, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Am. Math. Soc., 52 (1946), 292–302 | DOI | Zbl

[3] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnosti”, Teoriya veroyatnostei i ee primeneniya, 1 (1956), 157–214 | DOI | MR | Zbl

[4] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | DOI | MR | Zbl