The smoothness of regular equations according to parameter
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the solution of smoothness of one of the classes of hypo elliptic equations according to $\lambda$ parameter has been proved. The following has been proved particularly. For example, if we have the equation $P(\lambda, D)u=f$. Let’s mark by $N(\lambda)$ the set of solutions of equation $P(\lambda, D)u=0$ from class $W_2^H(R^n)$. If the dimension of $N(\lambda)$ does not depend on $\lambda,$ then all the solutions of equation $P(\lambda, D)u = f$ that are orthogonal to $N(\lambda)$ are infinitely differentiable by $(x, \lambda)$.
@article{UZERU_1988_3_a2,
     author = {G. {\CYRA}. Karapetyan},
     title = {The smoothness of regular equations according to parameter},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {21--29},
     publisher = {mathdoc},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/}
}
TY  - JOUR
AU  - G. А. Karapetyan
TI  - The smoothness of regular equations according to parameter
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 21
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/
LA  - ru
ID  - UZERU_1988_3_a2
ER  - 
%0 Journal Article
%A G. А. Karapetyan
%T The smoothness of regular equations according to parameter
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 21-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/
%G ru
%F UZERU_1988_3_a2
G. А. Karapetyan. The smoothness of regular equations according to parameter. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 21-29. http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/