The smoothness of regular equations according to parameter
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 21-29
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article the solution of smoothness of one of the classes of hypo elliptic equations according to $\lambda$ parameter has been proved. The following has been proved particularly. For example, if we have the equation $P(\lambda, D)u=f$. Let’s mark by $N(\lambda)$ the set of solutions of equation $P(\lambda, D)u=0$ from class $W_2^H(R^n)$. If the dimension of $N(\lambda)$ does not depend on $\lambda,$ then all the solutions of equation $P(\lambda, D)u = f$ that are orthogonal to $N(\lambda)$ are infinitely differentiable by $(x, \lambda)$.
@article{UZERU_1988_3_a2,
author = {G. {\CYRA}. Karapetyan},
title = {The smoothness of regular equations according to parameter},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {21--29},
year = {1988},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/}
}
TY - JOUR AU - G. А. Karapetyan TI - The smoothness of regular equations according to parameter JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1988 SP - 21 EP - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/ LA - ru ID - UZERU_1988_3_a2 ER -
G. А. Karapetyan. The smoothness of regular equations according to parameter. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 21-29. http://geodesic.mathdoc.fr/item/UZERU_1988_3_a2/
[1] M. Schechter, “Difierentiability of solutions of elliptic problems with respect to parameters”, Boll Un. Mat. I Tal., 513A:3 (1976), 601–608 | MR | Zbl
[2] V. A. Kondratev, V. M. Uroev, “O gladkosti reshenii pervoi kraevoi zadachi dlya ellipticheskikh uravnenii s parametrom”, Dif. ur., XXI:8 (1985), 1407–1412 | DOI | Zbl
[3] S. M. Nikolskii, “Pervaya kraevaya zadacha dlya odnogo lineinogo uravneniya”, DAN, 146:4 (1962), 767–769 | Zbl
[4] G. G. Kazaryan, G. A. Karapetyan, “O skhodimosti galerkinskikh priblizhenii k resheniyu zadachi Dirikhle dlya nekotorykh obschikh uravnenii”, Mat. sb., 124 (166):3 (7) (1984), 291–306 | MR | Zbl