On the solution of an optimal stabilization problem of highly sloping shell
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 156-161
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimal stabilization problem of the oscillations of an orthotropic rectangular highly sloping shell which is fixed at the edges by hinges has been considered. The shell becomes stable by means of supplementary control action on its upper surface. The problem has been solved by Fourier’s method, after which an infinite system of a second-order ordinary differential equations was received with separable variables. The optimal control action for each equation was formed.
@article{UZERU_1988_3_a12,
author = {V. S. Sargsyan and M. S. Gabrielyan and Y. G. Youssif},
title = {On the solution of an optimal stabilization problem of highly sloping shell},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {156--161},
year = {1988},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/}
}
TY - JOUR AU - V. S. Sargsyan AU - M. S. Gabrielyan AU - Y. G. Youssif TI - On the solution of an optimal stabilization problem of highly sloping shell JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1988 SP - 156 EP - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/ LA - ru ID - UZERU_1988_3_a12 ER -
%0 Journal Article %A V. S. Sargsyan %A M. S. Gabrielyan %A Y. G. Youssif %T On the solution of an optimal stabilization problem of highly sloping shell %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1988 %P 156-161 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/ %G ru %F UZERU_1988_3_a12
V. S. Sargsyan; M. S. Gabrielyan; Y. G. Youssif. On the solution of an optimal stabilization problem of highly sloping shell. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 156-161. http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/
[1] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR
[2] S. A. Ambartsumyan, Teoriya anizotropnykh obolochek, ed. I. K. Snitko, Fizmatgiz, M., 1961, 384 pp. | MR
[3] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 21:4-6 (1960)
[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR