On the solution of an optimal stabilization problem of highly sloping shell
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 156-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal stabilization problem of the oscillations of an orthotropic rectangular highly sloping shell which is fixed at the edges by hinges has been considered. The shell becomes stable by means of supplementary control action on its upper surface. The problem has been solved by Fourier’s method, after which an infinite system of a second-order ordinary differential equations was received with separable variables. The optimal control action for each equation was formed.
@article{UZERU_1988_3_a12,
     author = {V. S. Sargsyan and M. S. Gabrielyan and Y. G. Youssif},
     title = {On the solution of an optimal stabilization problem of highly sloping shell},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {156--161},
     publisher = {mathdoc},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/}
}
TY  - JOUR
AU  - V. S. Sargsyan
AU  - M. S. Gabrielyan
AU  - Y. G. Youssif
TI  - On the solution of an optimal stabilization problem of highly sloping shell
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 156
EP  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/
LA  - ru
ID  - UZERU_1988_3_a12
ER  - 
%0 Journal Article
%A V. S. Sargsyan
%A M. S. Gabrielyan
%A Y. G. Youssif
%T On the solution of an optimal stabilization problem of highly sloping shell
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 156-161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/
%G ru
%F UZERU_1988_3_a12
V. S. Sargsyan; M. S. Gabrielyan; Y. G. Youssif. On the solution of an optimal stabilization problem of highly sloping shell. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 156-161. http://geodesic.mathdoc.fr/item/UZERU_1988_3_a12/

[1] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR

[2] S. A. Ambartsumyan, Teoriya anizotropnykh obolochek, ed. I. K. Snitko, Fizmatgiz, M., 1961, 384 pp. | MR

[3] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 21:4-6 (1960)

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR