On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 9-20
Cet article a éte moissonné depuis la source Math-Net.Ru
For any polynomial $P_n(x)$ of degree $n$ a new method of estimation of $| P_n^{(s)}(x)|$ in arbitrary point $x\in[0, 1], 0\leq s\leq n$ has been presented. It has been proved that the obtained estimates are not less exact compared with other methods.
@article{UZERU_1988_3_a1,
author = {G. V. Badalyan and V. M. Edigarian},
title = {On a method of obtaining of an analogue of {V.} {A.} {Markof} enequality for polynomials in metric $L^p(0, 1), 1<p<\infty$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {9--20},
year = {1988},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/}
}
TY - JOUR AU - G. V. Badalyan AU - V. M. Edigarian TI - On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1 JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1988 SP - 9 EP - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/ LA - ru ID - UZERU_1988_3_a1 ER -
%0 Journal Article %A G. V. Badalyan %A V. M. Edigarian %T On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1 %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1988 %P 9-20 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/ %G ru %F UZERU_1988_3_a1
G. V. Badalyan; V. M. Edigarian. On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1
[1] I. G. Natanson, “Ravnomernye priblizheniya”, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl
[2] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. Mat. in-ta AN SSSR, 38, 1951, 244–278 | MR | Zbl
[3] S. V. Konyagin, “Otsenki proizvodnykh ot mnogochlenov”, Dokl. AN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl
[4] G. V. Badalyan, “Obobschenie mnogochlenov Lezhandra n nekotorye ikh primeneniya”, Izv. AN Arm. SSR, VIII:5 (1955), 1—28 | MR | Zbl
[5] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl