On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1988), pp. 9-20
Voir la notice de l'article provenant de la source Math-Net.Ru
For any polynomial $P_n(x)$ of degree $n$ a new method of estimation of $| P_n^{(s)}(x)|$ in arbitrary point $x\in[0, 1], 0\leq s\leq n$ has been presented. It has been proved that the obtained estimates are not less exact compared with other methods.
@article{UZERU_1988_3_a1,
author = {G. V. Badalyan and V. M. Edigarian},
title = {On a method of obtaining of an analogue of {V.} {A.} {Markof} enequality for polynomials in metric $L^p(0, 1), 1<p<\infty$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {9--20},
publisher = {mathdoc},
number = {3},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/}
}
TY - JOUR AU - G. V. Badalyan AU - V. M. Edigarian TI - On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1 JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1988 SP - 9 EP - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/ LA - ru ID - UZERU_1988_3_a1 ER -
%0 Journal Article %A G. V. Badalyan %A V. M. Edigarian %T On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1 %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1988 %P 9-20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1988_3_a1/ %G ru %F UZERU_1988_3_a1
G. V. Badalyan; V. M. Edigarian. On a method of obtaining of an analogue of V. A. Markof enequality for polynomials in metric $L^p(0, 1), 1