On the optimal stabilization of not completely controlled systems
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the optimal stabilization of a controlled system is considered in the paper when the minimizing functional is sign-constant and the system becomes stable only in the sense of the acting force [4]. In the general case, sufficient conditions are attained, according to which it is possible to solve the problem of the optimal stabilization by the acting force. For the linear differential equations with constant coefficients Lyapunov function is constructed and the optimal control actions are defined, which make the system stable in the sense of the acting force.
@article{UZERU_1988_1_a6,
     author = {S. G. Shahinyan},
     title = {On the optimal stabilization of not completely controlled systems},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {39--46},
     publisher = {mathdoc},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_1_a6/}
}
TY  - JOUR
AU  - S. G. Shahinyan
TI  - On the optimal stabilization of not completely controlled systems
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 39
EP  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_1_a6/
LA  - ru
ID  - UZERU_1988_1_a6
ER  - 
%0 Journal Article
%A S. G. Shahinyan
%T On the optimal stabilization of not completely controlled systems
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 39-46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1988_1_a6/
%G ru
%F UZERU_1988_1_a6
S. G. Shahinyan. On the optimal stabilization of not completely controlled systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 39-46. http://geodesic.mathdoc.fr/item/UZERU_1988_1_a6/

[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950, 369–450 | MR

[2] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 22:4–6 (1961) | MR | Zbl

[3] A. M. Letov, “Analiticheskoe konstruirovanie regulyatorov”, Avtomatika i telemekhanika, 23:11 (1962) | MR | Zbl

[4] M. S. Gabrielyan, S. G. Shaginyan, “O postroenii funktsii Lyapunova”, Uch. zapiski EGU, 1987, no. 1, 39–45 | MR | Zbl

[5] E. G. Albrekht, G. S. Shelementev, Lektsii po teorii stabilizatsii, Sverdlovsk, 1972

[6] E. A. Barbashin, N. N. Krasovskii, “O suschestvovanii funktsii Lyapunova v sluchae asimptoticheskoi ustoichivosti v tselom”, Prikl. mat. i mekhanika, 18:3 (1954), 345–350 | Zbl

[7] N. N.Krasovskii, Teoriya upravlenie dvizheniem, Nauka, M., 1968 | MR

[8] S. G. Shaginyan, “Ob odnoi zadache teorii ustoichivosti”, Uch. zapiski EGU, 1986, no. 2, 39–46 | MR | Zbl

[9] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR | Zbl