On a method of solution of space problems of elasticity theory for the nonorthotropic body
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 26-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the static problem of elasticity theory for the homogeneous anisotropic (13 elastic constants) body is discussed. A small physical parameter, which characterises the anisotropic properties of the material is introduced. Then the solution is expanded in power series of the small parameter. A theorem about the convergence of the solutions is proved.
@article{UZERU_1988_1_a4,
     author = {V. S. Sargsyan and G. M. Ghukassian},
     title = {On a method of solution of space problems of elasticity theory for the nonorthotropic body},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {26--33},
     publisher = {mathdoc},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_1_a4/}
}
TY  - JOUR
AU  - V. S. Sargsyan
AU  - G. M. Ghukassian
TI  - On a method of solution of space problems of elasticity theory for the nonorthotropic body
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 26
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_1_a4/
LA  - ru
ID  - UZERU_1988_1_a4
ER  - 
%0 Journal Article
%A V. S. Sargsyan
%A G. M. Ghukassian
%T On a method of solution of space problems of elasticity theory for the nonorthotropic body
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 26-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1988_1_a4/
%G ru
%F UZERU_1988_1_a4
V. S. Sargsyan; G. M. Ghukassian. On a method of solution of space problems of elasticity theory for the nonorthotropic body. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 26-33. http://geodesic.mathdoc.fr/item/UZERU_1988_1_a4/

[1] S. A. Ambartsumyan, Teoriya anizotropnykh plastin, Nauka, M., 1967, 268 pp. | MR | Zbl

[2] S. A. Ambartsumyan, Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974 | MR

[3] S. G. Lekhnitskii, Anizotropnye plastinki, Gostekhizdat, M., 1957 | MR

[4] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR

[5] V. S. Sarkisyan, “Ob odnom metode resheniya zadachi izgiba anizotropnykh vesma pologikh obolochek”, Tr. IX Sovetsko-chekhoslovatskogo soveschaniya: Primenenie metodov teorii funktsii i funktsionalnogo analiza k zadacham matematicheskoi fiziki (Donetsk, 7-13 sentyabrya 1986 g.), Donetsk, 1987, 6 pp.

[6] V. S. Sarkisyan, L. S. Shekyan, “Metod malogo parametra pri reshenii zadach teorii izgiba, kolebanii i ustoichivosti anizotropnykh obolochek”, Mekhanika: Mezhvuz. sb. nauchnykh trudov, 1982, no. 2, 110–119 | MR

[7] S. L. Sobolev, Nekotorye prilozheniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, Leningrad, 1950 | MR

[8] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Mat. sb., 29(71):3 (1951), 615–676 | MR | Zbl

[9] O. V. Guseva, “O kraevykh zadachakh dlya silno ellipticheskikh sistem”, Dokl. AN SSSR, 102:6 (1955), 1069–1072 | MR | Zbl