The representation of measurable functions by usual and multiple series of Legendre polynomials
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 143-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of representation of arbitrary functions by nstial and multiple series of Legendre polynomials in the sense of convergence in almost everywhere is considered in the paper.
@article{UZERU_1988_1_a12,
     author = {M. G. Grigoryan},
     title = {The representation of measurable functions by usual and multiple series of {Legendre} polynomials},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {143--146},
     year = {1988},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_1_a12/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - The representation of measurable functions by usual and multiple series of Legendre polynomials
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 143
EP  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_1_a12/
LA  - ru
ID  - UZERU_1988_1_a12
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T The representation of measurable functions by usual and multiple series of Legendre polynomials
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 143-146
%N 1
%U http://geodesic.mathdoc.fr/item/UZERU_1988_1_a12/
%G ru
%F UZERU_1988_1_a12
M. G. Grigoryan. The representation of measurable functions by usual and multiple series of Legendre polynomials. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 143-146. http://geodesic.mathdoc.fr/item/UZERU_1988_1_a12/

[1] D. E. Menshov, “Sur la série de Fourier des fonctions continues”, Matem. sb., 8(50) (1940), 493–518 | MR

[2] D. E. Menshov, “Sur la représentation des fonctions mesurables par des séries trigonométrique”, Matem. sb., 9 (1941), 667–692 | MR | Zbl

[3] D. E. Menshov, “O ryadakh Fure ot summiruemykh funktsii”, Tr. Mosk. matem. ob-va, 1, 1952, 5–58 | MR | Zbl

[4] A. A. Talalyan, “Predstavlenie izmerimykh funktsii ryadami”, Uspekhi mat. nauk, 15:5 (1960), 77–141 | DOI | MR | Zbl

[5] P. L. Ulyanov, “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[6] M. G. Grigoryan, “O skhodimosti pochti vsyudu dvoinykh ryadov Fure summiruemykh funktsii”, Anal. Math., 11:3 (1985), 201–216 | DOI | MR | Zbl

[7] E. V. Gobson, Teoriya sfericheskikh i ellipsoidalnykh funktsii, IL, M., 1952

[8] H. Pollard, “The mean convergence of orthogonal series. III”, Duke Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl

[9] J. Neuman, W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3 (1952), 219–222 | DOI | MR | Zbl

[10] K. S. Kazaryan, “O nekotorykh voprosakh teorii ortogonalnykh ryadov”, Matem. sb., 1982, no. 2, 278–294 | MR | Zbl

[11] B. S. Kashin, “Ob odnoi polnoi ortonormirovannoi sisteme”, Matem. sb., 99(141) (1976), 356–365 | MR | Zbl

[12] M. G. Grigoryan, “O skhodimosti v metrike LP i pochti vsyudu podposledovatelnostei sfericheskikh chastichnykh summ dvoinykh ryadov Fure po polnym ortonormirovannym sistemam”, Mezhvuzovskii sb. (Matematika), 1984, no. 2

[13] M. G. Grigoryan, “O skhodimosti sfericheskikh srednikh Rissa kratnykh integralov Fure”, DAN Arm. SSR, 69:2 (1979)