On multiple completeness of eigen functions of differential operator bunch generated by general boundary conditions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

For (I), (II) spectral problem with general boundary conditions (when the $\Omega$ region is single circle) the multiple completeness of the eigenfunctions in Sobolev’s space $^0 W^1_2 (\Omega)$ has been proved.
@article{UZERU_1987_3_a0,
     author = {G. V. Virabyan and G. A. Sargsian},
     title = {On multiple completeness of eigen functions of differential operator bunch generated by general boundary conditions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_3_a0/}
}
TY  - JOUR
AU  - G. V. Virabyan
AU  - G. A. Sargsian
TI  - On multiple completeness of eigen functions of differential operator bunch generated by general boundary conditions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 3
EP  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_3_a0/
LA  - ru
ID  - UZERU_1987_3_a0
ER  - 
%0 Journal Article
%A G. V. Virabyan
%A G. A. Sargsian
%T On multiple completeness of eigen functions of differential operator bunch generated by general boundary conditions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 3-8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_3_a0/
%G ru
%F UZERU_1987_3_a0
G. V. Virabyan; G. A. Sargsian. On multiple completeness of eigen functions of differential operator bunch generated by general boundary conditions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_1987_3_a0/

[1] N. E. Tovmasyan, “Novye postanovki i issledovaniya pervoi, vtoroi i tretei kraevykh zadach dlya silno svyazannykh ellipticheskikh sistem dvukh differentsialnykh uravnenii vtorogo poryadka s postoyannymi koeffitsientami”, Izv. AN Arm. SSR. Matem., 3:6 (1968), 497–521 | MR

[2] T. I. Zelenyak, “O smeshannoi zadache dlya odnogo uravneniya, ne razreshennogo otnositelno starshei proizvodnoi po vremeni”, DAN SSSR, 154:6 (1964)

[3] G. V. Virabyan, G. A. Sargsyan, “O kratnoi polnote dlya odnogo differentsialnogo puchka, porozhdennogo smeshannoi kraevoi aadachoi”, DAN Arm. SSR, LXXXIV:4 (1987) | MR | Zbl

[4] S. N. Sklyar, “Spektralnye svoistva puchka differentsialnykh operatorov, svyazannogo s odnoi smeshannoi zadachei”, Dinamika sploshnoi sredy. Sibirskoe otd. AN SSSR (In-t gidrodinamiki), 1976, no. 27

[5] S. N. Sklyar, “O bazise iz sobstvennykh funktsii operatora, svyazannogo s odnoi zadachei S. S. Soboleva”, Dinamika sploshnoi sredy. Sibirskoe otd. AN SSSR (In-t gidrodinamiki), 1974, no. 17, 81–88

[6] G. V. Virabyan, “Ob $n$-kratnoi polnote dlya odnogo klassa polinomialnykh operatornykh puchkov”, DAN Arm. SSR, XLVII:2 (1969)