A problem for the semi-infinite plate with a semi-infinite stringer
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1987), pp. 28-34
Cet article a éte moissonné depuis la source Math-Net.Ru
A problem for the semi-infinite plate with a semi-infinite stringer has been considered in the paper. Using Fourier transformation and the method of factorization the problem has been reduced of the solution of recurrent equations. The asymptotic expansions for the contact forces near and far from the edges of the stringer have been obtained.
@article{UZERU_1987_2_a4,
author = {E. Kh. Grigorian},
title = {A problem for the semi-infinite plate with a semi-infinite stringer},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {28--34},
year = {1987},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1987_2_a4/}
}
TY - JOUR AU - E. Kh. Grigorian TI - A problem for the semi-infinite plate with a semi-infinite stringer JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1987 SP - 28 EP - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1987_2_a4/ LA - ru ID - UZERU_1987_2_a4 ER -
E. Kh. Grigorian. A problem for the semi-infinite plate with a semi-infinite stringer. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1987), pp. 28-34. http://geodesic.mathdoc.fr/item/UZERU_1987_2_a4/
[1] R. Muki, E. Sternberg, “Peredacha nagruzki ot rastyagivaemogo poperechnogo sterzhnya k polubeskonechnoi uprugoi plastine”, Tr. Amer.obsch. inzh.-mekh., ser. E, 1968, no. 4, 124–135
[2] E. X. Grigoryan, “Ob odnoi zadache dlya uprugoi poluploskosti, soderzhaschei uprugbe konechnoe vklyuchenie”, Uch. zapiski EGU, 1982, no. 2