A limit theorem for virtual waiting time in $M|G|1|\infty$ model in unit traffic
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1987), pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $M|G|1|\infty$ model the virtual waiting time $w(t)$ at epoch $t$ has been considered at $t\rightarrow +\infty$ when the traffic intensity equals one. The second moment of the service time is not supposed to be finite.
@article{UZERU_1987_2_a1,
     author = {E. A. Danielyan},
     title = {A limit theorem for virtual waiting time in $M|G|1|\infty$ model in unit traffic},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {9--16},
     publisher = {mathdoc},
     number = {2},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_2_a1/}
}
TY  - JOUR
AU  - E. A. Danielyan
TI  - A limit theorem for virtual waiting time in $M|G|1|\infty$ model in unit traffic
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 9
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_2_a1/
LA  - ru
ID  - UZERU_1987_2_a1
ER  - 
%0 Journal Article
%A E. A. Danielyan
%T A limit theorem for virtual waiting time in $M|G|1|\infty$ model in unit traffic
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 9-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_2_a1/
%G ru
%F UZERU_1987_2_a1
E. A. Danielyan. A limit theorem for virtual waiting time in $M|G|1|\infty$ model in unit traffic. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1987), pp. 9-16. http://geodesic.mathdoc.fr/item/UZERU_1987_2_a1/

[1] V. A. Ditkin, A. P. Prudnikov, “Operatsionnoe ischislenie”, Itogi nauki i tekhn. Matem. analiz 1964, VINITI AN SSSR, M., 1966, 7–75 | MR

[2] B. V. Gnedenko, E. A. Danielyan, B. N. Dimitrov i dr., Prioritetnye sistemy massovogo obsluzhivaniya, MGU, M., 1973, 448 pp.

[3] V. Feller, v 2 t., v. 2, Mir, M., 1984, 751 pp. | MR | Zbl

[4] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[5] M. A. Evgrafov, Analiticheskie funktsii, Nauka, M., 1968, 423 pp. | MR | Zbl

[6] M. M. Dzhrbashyan, Integralnye preobrazovanii i predstavleniya funktsii v kompleksnoi oblasti, M., 1966, 671 pp. | MR | Zbl

[7] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972, 414 pp. | MR | Zbl