On an infinite-dimensional generalization of the Brouwer Fixed-Point Theorem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 14-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove some properties of the continuous mappings $f:B\rightarrow -H$ of the closed unit ball $B$ of the real separable Hilbert space $H$ belonging to special $K_0$ class. The definition and the basic properties of the class $K_0$ have been given in [1].
@article{UZERU_1987_1_a2,
     author = {E. A. Mirzakhanyan},
     title = {On an infinite-dimensional generalization of the {Brouwer} {Fixed-Point} {Theorem}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--17},
     publisher = {mathdoc},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_1_a2/}
}
TY  - JOUR
AU  - E. A. Mirzakhanyan
TI  - On an infinite-dimensional generalization of the Brouwer Fixed-Point Theorem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 14
EP  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_1_a2/
LA  - ru
ID  - UZERU_1987_1_a2
ER  - 
%0 Journal Article
%A E. A. Mirzakhanyan
%T On an infinite-dimensional generalization of the Brouwer Fixed-Point Theorem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 14-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_1_a2/
%G ru
%F UZERU_1987_1_a2
E. A. Mirzakhanyan. On an infinite-dimensional generalization of the Brouwer Fixed-Point Theorem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 14-17. http://geodesic.mathdoc.fr/item/UZERU_1987_1_a2/

[1] V. G. Boltyanskii, E. A. Mirzakhanyan, “Postroenie stepeni otobrazheniya v gilbertovom prostranstve”, Izv. AN Arm.SSR. Ser. matem., 9:5 (1974), 374–386 | MR | Zbl

[2] K. Borsuk, Teoriya rektraktov, Mir, M., 1971 | MR

[3] E. A. Mirzakhanyan, “Postroenie beskonechnomernykh gomotopicheskikh grupp”, Izv. AN Arm. SSR, ser. matem., 8:3 (1973), 212–225 | MR | Zbl

[4] E. A. Mirzakhanyan, “Vychislenie beskonechnomernykh gomotopicheskikh grupp kompaktnogo tipa edinichnoi sfery gilbertova prostranstva”, Izv. AN Arm. SSR, ser. matemat., X:2 (1975) | Zbl

[5] E. A. Mirzakhanyan, “O nekotorykh svoistvakh beskonechnomernykh gomotopicheskikh grupp podmnozhestv gilbertova prostranstva”, DAN ArmSSR, 79:1 (1984), 15–17 | MR | Zbl

[6] E. A. Mirzakhanyan, “O nekotorykh svoistvakh nepreryvno differentsiruemykh otobrazhenii podmnozhestv gilbertova prostranstva”, Uch. zap. EGU, 1986, no. 1 | MR