On Dirichlet’s problem for Monge–Amper equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 9-13
Cet article a éte moissonné depuis la source Math-Net.Ru
The article is devoted to the nonlinear homogeneous boundary problem of eigenvalues for differential equation of Monge-Amper in the unit circle. The spectral connection of this problem with S.L. Sobolev type operators is shown.
@article{UZERU_1987_1_a1,
author = {G. V. Virabyan},
title = {On {Dirichlet{\textquoteright}s} problem for {Monge{\textendash}Amper} equation},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {9--13},
year = {1987},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1987_1_a1/}
}
G. V. Virabyan. On Dirichlet’s problem for Monge–Amper equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 9-13. http://geodesic.mathdoc.fr/item/UZERU_1987_1_a1/
[1] R. A. Aleksandrian, Ju. M. Berezanskii, V. A. Il’in, A.G. Kostjucenko et al., Partial Differential Equations, v. 105, Amer. Math. Soc. Transl. Ser. 2, 1976 | DOI
[2] F. Rellich, Math. Ann., 107 (1933), 505–513 | DOI | MR
[3] P. Kursig Uravneniya s chastnymi proizvodnymi, Uravneniya s chastnymi proizvodnymi, M., 1964
[4] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. Moskovskogo matematicheskogo obschestva, 9, 1960, 445 | MR | Zbl
[5] G. V. Virobyan, “O spektralnykh svoistvakh operatorov, porozhdennykh sistemami differentsialnykh uravnenii vysshego poryadka tipa S. L. Soboleva”, DAN SSSR, 150:1 (1963)