@article{UZERU_1986_3_a4,
author = {L. A. Sanoyan},
title = {The antiplane problem of magnetoelasticity in piezomagnetic mediums},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {30--35},
year = {1986},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1986_3_a4/}
}
TY - JOUR AU - L. A. Sanoyan TI - The antiplane problem of magnetoelasticity in piezomagnetic mediums JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1986 SP - 30 EP - 35 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_1986_3_a4/ LA - ru ID - UZERU_1986_3_a4 ER -
L. A. Sanoyan. The antiplane problem of magnetoelasticity in piezomagnetic mediums. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1986), pp. 30-35. http://geodesic.mathdoc.fr/item/UZERU_1986_3_a4/
[1] G. E. Bagdasaryan, 3. N. Danoyan, L. A. Sanoyan, “Osnovnye uravneniya i sootnosheniya ploskoi zadachi magnitouprugosti pezomagnitnykh sred”, Uch. zapiski EGU, 1986, no. 2
[2] G. E. Bagdasaryan, 3. N. Danoyan, V. G. Garakov, “Rasprostranenie magnitouprugikh voln v pezomagnitnom poluprostranstve”, III vsesoyuz. simp.: Teoreticheskie voprosy magnitouprugosti, Izd-vo EGU, Erevan, 1984, 178
[3] G. E. Bagdasaryan, 3. N. Danoyan, V. G. Garakov, “Sdvigovye poverkhnostnye magnitouprugie volny v anizotropnom pezomagnitnom poluprostranstve”, Materialy II vsesoyuz. nauchno-tekhnich. konf.: Prochnost, zhestkost i tekhnologichnost izdelii iz kompozitsionnykh materialov. I, Izd-vo EGU, Erevan, 1984, 262
[4] F. I. Fedorov, Teoriya uprugikh voln v kristallakh, Nauka, M., 1965, 386 pp. | Zbl
[5] A. A. Khzardzhyan, “O ploskoi i antiploskoi zadachakh teorii uprugosti v odnorodnykh anizotropnykh sredakh”, Uch. zapiski EGU, 1982, no. 2, 45–49
[6] A. S. Avetisyan, “K zadache rasprostraneniya sdvigovykh voln v pezoelektricheskoi srede”, Izv. AN Arm. SSR, Mekhanika, 38:1 (1985), 12–19