Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1986_1_a1, author = {T. N. Harutyunyan}, title = {On the {Dirac} operator with partially given spectrum}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {11--19}, publisher = {mathdoc}, number = {1}, year = {1986}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1986_1_a1/} }
TY - JOUR AU - T. N. Harutyunyan TI - On the Dirac operator with partially given spectrum JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1986 SP - 11 EP - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1986_1_a1/ LA - ru ID - UZERU_1986_1_a1 ER -
T. N. Harutyunyan. On the Dirac operator with partially given spectrum. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1986), pp. 11-19. http://geodesic.mathdoc.fr/item/UZERU_1986_1_a1/
[1] B. A. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl
[2] R. Jost, W. Kohn, Kgl. Danske Videnskab. Selbkab, Mat. fys. Medd., 27 (1953), 9 | MR | Zbl
[3] M. G. Krein, “O perekhodnoi funktsii odnomernoi kraevoi zadachi vtorogo poryadka”, Dokl. AN SSSR, 88:3 (1953), 405–408 | MR | Zbl
[4] M. G. Krein, “Ob integralnykh uravneniyakh, porozhdayuschikh differentsialnye uravneniya vtorogo poryadka”, DAN SSSR, 97:1 (1954), 21–24 | MR | Zbl
[5] H. Hochstadt, “The inverse Sturm–Liouville problem”, Comm. Pure Appl. Math., 26 (1973), 715–729 | DOI | MR | Zbl
[6] B. M. Levitan, “Ob opredelenii operatora Shturma–Liuvillya po odnomu i dvum spektram”, Izv. AN SSSR. Ser. matematicheskaya, 42:1 (1978), 185–199 | MR | Zbl
[7] E. S. Panakhov, Ob opredelenii differentsialnogo operatora s osobennostyu v nule po dvum spektram, Dep. v VINITI AN SSSR # 4407-80, 1980
[8] E. S. Panakhov, “Ob obratnoi zadache po dvum spektram dlya differentsialnoyu operatora s osobennostyu v nule”, DAN Azerb. SSSR, 36:10 (1980), 185–199
[9] K. P. Kirchev, P. X. Khristov, O razlozheniyakh, svyazannykh s proizvedeniyami reshenii dvukh regulyarnykh zadach Shturma-Lnuvnllya, Preprint R5 12227, OIYaI, Dubna, 1979
[10] K. P. Kirchev, P. X. Khristov, O razlozheniyakh, svyazannykh s proizvedeniyami reshenii dvukh regulyarnykh operatorov Diraka preprintinfo Preprint R5 12410, OIYaI, Dubna, 1979
[11] E. S. Panakhov, Obratnaya zadacha dlya sistemy Diraka po dvum chastichno zadannym spektram, Dep. v VINITI AN SSSR # 3354-81, 1981
[12] H. Grosse,A. Martin, “Theory of the inverse problem for confining potentials”, Nuclear Phys. V, 148 (1979), 413–432
[13] M. N. Adamyan, “Obratnaya zadacha vosstanovleniya rastuschego potentsiala dlya radialnogo uravneniya Shredingera”, Teor. i mat. fiz., 48:1 (1981), 70–79 | MR
[14] A. B. Shabat, “Odnomernye vozmuscheniya differentsialnykh operatorov i obratnaya zadacha rasseyaniya”, Zadachi mekhaniki i matematicheskoi fiziki, Nauka, M., 1976, 279–294
[15] K. Shadan, P. Sabate, Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1981
[16] V. S. Gerdzhikov, P. P. Kulish, “Vyvod preobrazovaniya Beklunda v formalizme obratnoi zadachi rasseyaniya”, TMF, 39:1 (1979), 69–74 | DOI | MR
[17] B. E. Kanguzhin, Teoremy edinstvennosti obratnykh zadach spektralnogo analiza dlya differentsialnykh operatorov s neraspadayuschimisya kraevymi usloviyami, Dep. v VINITI AN SSSR # 556-83, 1983
[18] M. G. Gasymov, B. M. Levitan, “Obratnaya zadacha dlya sistemy Diraka”, DAN SSSR, 167:5 (1966), 967–970 | MR | Zbl