On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1986), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{UZERU_1986_1_a0,
     author = {G. V. Badalyan and V. M. Edigarian},
     title = {On the question of the best approximation of $k$-fold differentiable functions with polynomials of {Muntz{\textquoteright}} system in $L^p(0,1)$ space},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--10},
     publisher = {mathdoc},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/}
}
TY  - JOUR
AU  - G. V. Badalyan
AU  - V. M. Edigarian
TI  - On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1986
SP  - 3
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/
LA  - ru
ID  - UZERU_1986_1_a0
ER  - 
%0 Journal Article
%A G. V. Badalyan
%A V. M. Edigarian
%T On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1986
%P 3-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/
%G ru
%F UZERU_1986_1_a0
G. V. Badalyan; V. M. Edigarian. On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1986), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/