Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1986_1_a0, author = {G. V. Badalyan and V. M. Edigarian}, title = {On the question of the best approximation of $k$-fold differentiable functions with polynomials of {Muntz{\textquoteright}} system in $L^p(0,1)$ space}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {3--10}, publisher = {mathdoc}, number = {1}, year = {1986}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/} }
TY - JOUR AU - G. V. Badalyan AU - V. M. Edigarian TI - On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1986 SP - 3 EP - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/ LA - ru ID - UZERU_1986_1_a0 ER -
%0 Journal Article %A G. V. Badalyan %A V. M. Edigarian %T On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1986 %P 3-10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/ %G ru %F UZERU_1986_1_a0
G. V. Badalyan; V. M. Edigarian. On the question of the best approximation of $k$-fold differentiable functions with polynomials of Muntz’ system in $L^p(0,1)$ space. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1986), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1986_1_a0/