Expansion in some systems of rational functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1985), pp. 10-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{ \alpha_k\}_t^\infty$ be an arbitrary sequence of complex numbers lying in the unit disk: $|\alpha_k|1 (k\in N)$. We consider a system of rational functions with poles at the points $z=\alpha_k$ and $z=1/\sqrt{\alpha_k} (k\in N)$: $$P_n(z)=\dfrac{z^2}{( 1-z)^4}[\pi_n(z)+\pi_n^{-1}(z)-2]^2,$$
where $\pi_n(z)=\prod\limits_{k=1}^n\dfrac{z-\alpha_k}{1-\overline{\alpha_k}z}\cdot\dfrac{1-\overline{\alpha_k }}{1-\alpha_k} (n\in N).$
The following theorem is proved. If the series $\sum\limits_{n=1}^\infty (1-|\alpha_n|)$ diverges, then for any function $f(z)$ continuous on the unit circle, the sequence
rational functions $f_n(z)$ converges to $f(z)$ uniformly on the unit circle.
@article{UZERU_1985_3_a1,
author = {A. A. Kitbalyan},
title = {Expansion in some systems of rational functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {10--15},
publisher = {mathdoc},
number = {3},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1985_3_a1/}
}
TY - JOUR AU - A. A. Kitbalyan TI - Expansion in some systems of rational functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1985 SP - 10 EP - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1985_3_a1/ LA - ru ID - UZERU_1985_3_a1 ER -
A. A. Kitbalyan. Expansion in some systems of rational functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1985), pp. 10-15. http://geodesic.mathdoc.fr/item/UZERU_1985_3_a1/