Expansion in some systems of rational functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1985), pp. 10-15
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{ \alpha_k\}_t^\infty$ be an arbitrary sequence of complex numbers lying in the unit disk: $|\alpha_k|1 (k\in N)$. We consider a system of rational functions with poles at the points $z=\alpha_k$ and $z=1/\sqrt{\alpha_k} (k\in N)$: $$P_n(z)=\dfrac{z^2}{( 1-z)^4}[\pi_n(z)+\pi_n^{-1}(z)-2]^2,$$ where $\pi_n(z)=\prod\limits_{k=1}^n\dfrac{z-\alpha_k}{1-\overline{\alpha_k}z}\cdot\dfrac{1-\overline{\alpha_k }}{1-\alpha_k} (n\in N).$ The following theorem is proved. If the series $\sum\limits_{n=1}^\infty (1-|\alpha_n|)$ diverges, then for any function $f(z)$ continuous on the unit circle, the sequence rational functions $f_n(z)$ converges to $f(z)$ uniformly on the unit circle.
@article{UZERU_1985_3_a1,
author = {A. A. Kitbalyan},
title = {Expansion in some systems of rational functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {10--15},
year = {1985},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1985_3_a1/}
}
A. A. Kitbalyan. Expansion in some systems of rational functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1985), pp. 10-15. http://geodesic.mathdoc.fr/item/UZERU_1985_3_a1/
[1] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR. Ser. matem., 9:7 (1956), 3–28 | MR
[2] A. A. Kitbalyan, “Razlozheniya po obobschennym trigonometricheskim sistemam”, Izv. AN ArmSSR, seriya fiz.-matem., 16:6 (1963), 3–24 | MR | Zbl
[3] A. A. Kitbalyan, “Ob odnom obobschenii yadra Feiera 69, # 1, s. 8—14”, Dokl. AN Arm. SSR, 69:1 (1979), 8–14 | MR | Zbl