Stable sets in the differential games with m aim sets and changeable dynamics
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
Problems of constructing stable paths and integral manifolds for differential games in the case of $m$ target sets are considered. On the basis of these bridges, the strategies of the players are determined for the game studied in [1], when the dynamics of the game changes after each meeting. Under certain conditions, the narrowest classes of strategies are indicated in which there is a saddle point of the game.
@article{UZERU_1985_2_a0,
author = {M. S. Gabrielyan},
title = {Stable sets in the differential games with m aim sets and changeable dynamics},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--9},
year = {1985},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/}
}
TY - JOUR AU - M. S. Gabrielyan TI - Stable sets in the differential games with m aim sets and changeable dynamics JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1985 SP - 3 EP - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/ LA - ru ID - UZERU_1985_2_a0 ER -
M. S. Gabrielyan. Stable sets in the differential games with m aim sets and changeable dynamics. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/
[1] M. S. Gabrielyan, A. I. Subbotin, “Igrovye zadachi o vstreche s $m$ tselevymi mnozhestvami”, PMM, 43:2 (1979), 204–208 | MR | Zbl
[2] N. N. Krasovskii, A. I. Subbotin, Pozitsionye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[3] M. S. Gabrielyan, “Opredelenie strategii i dokazatelstvo alternativy dlya differentsialnoi igry s neskolkimi tselevymi mnozhestvami pri menyayuschikhsya sistemakh”, Izv. AN Arm. SSR (mekhanika), 31:6 (1978) | Zbl