Stable sets in the differential games with m aim sets and changeable dynamics
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of constructing stable paths and integral manifolds for differential games in the case of $m$ target sets are considered. On the basis of these bridges, the strategies of the players are determined for the game studied in [1], when the dynamics of the game changes after each meeting. Under certain conditions, the narrowest classes of strategies are indicated in which there is a saddle point of the game.
@article{UZERU_1985_2_a0,
     author = {M. S. Gabrielyan},
     title = {Stable sets in the differential games with m aim sets and changeable dynamics},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/}
}
TY  - JOUR
AU  - M. S. Gabrielyan
TI  - Stable sets in the differential games with m aim sets and changeable dynamics
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1985
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/
LA  - ru
ID  - UZERU_1985_2_a0
ER  - 
%0 Journal Article
%A M. S. Gabrielyan
%T Stable sets in the differential games with m aim sets and changeable dynamics
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1985
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/
%G ru
%F UZERU_1985_2_a0
M. S. Gabrielyan. Stable sets in the differential games with m aim sets and changeable dynamics. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_1985_2_a0/

[1] M. S. Gabrielyan, A. I. Subbotin, “Igrovye zadachi o vstreche s $m$ tselevymi mnozhestvami”, PMM, 43:2 (1979), 204–208 | MR | Zbl

[2] N. N. Krasovskii, A. I. Subbotin, Pozitsionye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[3] M. S. Gabrielyan, “Opredelenie strategii i dokazatelstvo alternativy dlya differentsialnoi igry s neskolkimi tselevymi mnozhestvami pri menyayuschikhsya sistemakh”, Izv. AN Arm. SSR (mekhanika), 31:6 (1978) | Zbl