Rings of cohomologies mod 2 of some Thom spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1985), pp. 28-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1], the notion of an $a$-framed bordism was introduced, where $a$ is the Schubert symbol. The problem of calculating the groups of stably $a$-bordant closed $a$-framed submanifolds of Euclidean spaces reduces to the problem of calculating the stable homotopy groups of some Thom spaces. In the present paper, we study the cohomology rings modulo 2 of these spaces. As an application in one case, a description is given of the corresponding graded cohomology group as a module over the Steenrod algebra A2.
@article{UZERU_1985_1_a3,
     author = {A. A. Ohnikyan},
     title = {Rings of cohomologies mod 2 of some {Thom} spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {28--32},
     publisher = {mathdoc},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/}
}
TY  - JOUR
AU  - A. A. Ohnikyan
TI  - Rings of cohomologies mod 2 of some Thom spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1985
SP  - 28
EP  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/
LA  - ru
ID  - UZERU_1985_1_a3
ER  - 
%0 Journal Article
%A A. A. Ohnikyan
%T Rings of cohomologies mod 2 of some Thom spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1985
%P 28-32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/
%G ru
%F UZERU_1985_1_a3
A. A. Ohnikyan. Rings of cohomologies mod 2 of some Thom spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1985), pp. 28-32. http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/

[1] A. A. Ognikyan, “Ob odnom obobschenii osnaschennogo bordizma”, DAN Arm. SSR, 79:5 (1984) | MR | Zbl

[2] F. Griffits, Dzh. Kharris, Osnovy algebraicheskoi geometrii, Mir, M., 1982 | MR

[3] D. Khyuzmoller, Rassloennye prostranstva, Mir, M., 1970 | MR | Zbl

[4] Dzh. Shvarts, Differentsialnaya geometriya i topologiya, Mir, M., 1970

[5] R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl

[6] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl