Rings of cohomologies mod 2 of some Thom spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1985), pp. 28-32
Cet article a éte moissonné depuis la source Math-Net.Ru
In [1], the notion of an $a$-framed bordism was introduced, where $a$ is the Schubert symbol. The problem of calculating the groups of stably $a$-bordant closed $a$-framed submanifolds of Euclidean spaces reduces to the problem of calculating the stable homotopy groups of some Thom spaces. In the present paper, we study the cohomology rings modulo 2 of these spaces. As an application in one case, a description is given of the corresponding graded cohomology group as a module over the Steenrod algebra A2.
@article{UZERU_1985_1_a3,
author = {A. A. Ohnikyan},
title = {Rings of cohomologies mod 2 of some {Thom} spaces},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {28--32},
year = {1985},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/}
}
A. A. Ohnikyan. Rings of cohomologies mod 2 of some Thom spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1985), pp. 28-32. http://geodesic.mathdoc.fr/item/UZERU_1985_1_a3/
[1] A. A. Ognikyan, “Ob odnom obobschenii osnaschennogo bordizma”, DAN Arm. SSR, 79:5 (1984) | MR | Zbl
[2] F. Griffits, Dzh. Kharris, Osnovy algebraicheskoi geometrii, Mir, M., 1982 | MR
[3] D. Khyuzmoller, Rassloennye prostranstva, Mir, M., 1970 | MR | Zbl
[4] Dzh. Shvarts, Differentsialnaya geometriya i topologiya, Mir, M., 1970
[5] R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl
[6] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl