Konstrukce společných tečen dvou kuželoseček
Učitel matematiky, Tome 25 (2017) no. 4, pp. 193-214
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The subject of this article is a construction of common tangents of two conic sections. At first we mention three different terms, which are the collineation, Pascal's diestock and a tangent of a conic section. Then using their properties we put these terms together to find common tangents of two ellipses. Finally we expand the ideas used for two ellipses to find common tangents in other possible assignments of two conic sections.
The subject of this article is a construction of common tangents of two conic sections. At first we mention three different terms, which are the collineation, Pascal's diestock and a tangent of a conic section. Then using their properties we put these terms together to find common tangents of two ellipses. Finally we expand the ideas used for two ellipses to find common tangents in other possible assignments of two conic sections.
Classification :
97G40
@article{UM_2017_25_4_a0,
author = {Kr\'alov\'a, Alice},
title = {Konstrukce spole\v{c}n\'ych te\v{c}en dvou ku\v{z}elose\v{c}ek},
journal = {U\v{c}itel matematiky},
pages = {193--214},
year = {2017},
volume = {25},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/UM_2017_25_4_a0/}
}
Králová, Alice. Konstrukce společných tečen dvou kuželoseček. Učitel matematiky, Tome 25 (2017) no. 4, pp. 193-214. http://geodesic.mathdoc.fr/item/UM_2017_25_4_a0/
[1] Borecká, K.: Konstruktivní geometrie. et al. (2002). Brno: Akademické nakladatelství CERM, s.r.o.
[2] Havlíček, K.: Úvod do projektivní geometrie kuželoseček. (1956). Praha: SNTL.
[3] Jarešová, M., Volf, I.: Matematika křivek. (2012). Dostupné z http://www.fyzikalniolympiada.cz/texty/matematika/mkrivek.pdf
[4] Pomykalová, E.: Deskriptivní geometrie pro střední školy. (2012). Praha: Prometheus, s.r.o.
[5] Rádl, P.: Konstruktivní geometrie. (2000). Brno: MZLU.
[6] Urban, A.: Deskriptivní geometrie I. (1965). Praha: SNTL.