Trojúhelníčková konstrukce elipsy
Učitel matematiky, Tome 25 (2017) no. 1, pp. 1-8
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the first part, we assume well known characteristics of ellipse which are given by triangle construction using main circles. We extend them on some lesser known features like Apollonius's theorem of associated radii of the ellipse. In the second part, we assume triangle construction of ellipse given by associated radii.
In the first part, we assume well known characteristics of ellipse which are given by triangle construction using main circles. We extend them on some lesser known features like Apollonius's theorem of associated radii of the ellipse. In the second part, we assume triangle construction of ellipse given by associated radii.
Classification :
01A20, 97G40
@article{UM_2017_25_1_a0,
author = {Ko\v{c}andrlov\'a, Milada},
title = {Troj\'uheln{\'\i}\v{c}kov\'a konstrukce elipsy},
journal = {U\v{c}itel matematiky},
pages = {1--8},
year = {2017},
volume = {25},
number = {1},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/UM_2017_25_1_a0/}
}
Kočandrlová, Milada. Trojúhelníčková konstrukce elipsy. Učitel matematiky, Tome 25 (2017) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/UM_2017_25_1_a0/
[1] Hruša, K.: O jistém vytvoření elipsy. (1935). ČPMF, 64(1), 6-10.
[2] Jeřábek, V.: O jisté affinní poloze mezi ellipsou a kruhem. (1909). ČPMF, 38(3), 333-335.
[3] Kaufmann, B.: Konstrukce elipsy ze sdružených průměrů. (1930-1). Rozhledy MF, 10(2).
[4] Maleček, K.: Trojúhelníková konstrukce bodů elipsy a její zobecnění. (1995, září). In Sborník 15. konference OSGaPG (24-26).