Něco málo o prvočíslech
Učitel matematiky, Tome 24 (2016) no. 1, pp. 58-60
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The article deals with primes of the type $(p,p+d,p+2d). Gradually, some properties of such triplets of primes are deduced. The theorem "when divided by 12, each prime bigger than 3 has remainder of 1" is proved.
The article deals with primes of the type $(p,p+d,p+2d). Gradually, some properties of such triplets of primes are deduced. The theorem "when divided by 12, each prime bigger than 3 has remainder of 1" is proved.
Classification :
11-xx, 11A41
@article{UM_2016_24_1_a4,
author = {Calda, Emil},
title = {N\v{e}co m\'alo o prvo\v{c}{\'\i}slech},
journal = {U\v{c}itel matematiky},
pages = {58--60},
year = {2016},
volume = {24},
number = {1},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/UM_2016_24_1_a4/}
}
Calda, Emil. Něco málo o prvočíslech. Učitel matematiky, Tome 24 (2016) no. 1, pp. 58-60. http://geodesic.mathdoc.fr/item/UM_2016_24_1_a4/
[1] Fuchs, E.: Co ještě nevíme o přirozených číslech aneb Některé vlastnosti prvočísel. (1998). Učitel matematiky 7, 1-8.