@article{UM_2015_23_4_a0,
author = {Klepancov\'a, Michaela and Smetanov\'a, Dana},
title = {Nekone\v{c}n\'e rady a {\'\i}ch vizualiz\'acia},
journal = {U\v{c}itel matematiky},
pages = {193--205},
year = {2015},
volume = {23},
number = {4},
language = {sk},
url = {http://geodesic.mathdoc.fr/item/UM_2015_23_4_a0/}
}
Klepancová, Michaela; Smetanová, Dana. Nekonečné rady a ích vizualizácia. Učitel matematiky, Tome 23 (2015) no. 4, pp. 193-205. http://geodesic.mathdoc.fr/item/UM_2015_23_4_a0/
[1] Bardelle, C.: Visual proofs: An experiment. (2010). In CERME 6 - Proceedings of Sixth Conference of European Research in Mathematics Education (251-260). Dostupné z http://ife.ens-lyon.fr/publications/edition-electronique/cerme6/cerme6.pdf
[2] Cornu, B.: Limits. (1991). In D. Tall (Ed.), Advanced Mathematical Thinking (153-165). Dordrecht: Kluwer Academic Publishers. | MR
[3] Eisenmann, P.: Why is it not true that 0,999...<1?. (2008). The teaching of mathematics, 11(1), 35-40.
[4] Gunčaga, J., Fulier, J., Eisenmann, P.: Modernizácia a inovácia vyučovania matematickej analýzy. (2008). Ružomberok: KU.
[5] Monaghan, J.: Young people's ideas of infinity. (2001). Educational Studies in Mathematics, 48(2-3), 239-257. | DOI
[6] Nelsen, R. B.: Proofs without words. (1993). Washington: MAA Service Center. | MR
[7] Richman, F.: Is 0,999...=1?. (1999). Mathematics Magazine, 72(5), 396-400. | MR
[8] Sierpinska, A.: Humanities students and epistemological obstacles related to limits. (1987). Educational Studies in Mathematics, 18(4), 371-387. | DOI
[9] Williams, S. R.: Models of limit held by college calculus students. (1991). Journal for Research in Mathematics Education, 22(3), 219-236. Dostupné z http://www.jstor.org/discover/10.2307/749075?uid=3739024&amp;uid=2129&amp;uid=2&amp;uid=70&amp;uid=4&amp;sid=21102295043697 | DOI