Bodové konstrukce elipsy založené na afinitě mezi kružnicí a elipsou
Učitel matematiky, Tome 23 (2015) no. 3, pp. 141-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Definition of affinity in a plane and its properties. Ellipse as an image of a circle in different types of affinity in a plane. The cross-piece construction of an ellipse and its relationship to the parallelogram method. Construction of an ellipse based on affinity between a circle and an ellipse which is different from the cross-piece construction. The draftman's method and the trammel method of ellipse construction and their relationship.
Definition of affinity in a plane and its properties. Ellipse as an image of a circle in different types of affinity in a plane. The cross-piece construction of an ellipse and its relationship to the parallelogram method. Construction of an ellipse based on affinity between a circle and an ellipse which is different from the cross-piece construction. The draftman's method and the trammel method of ellipse construction and their relationship.
@article{UM_2015_23_3_a1,
     author = {Kr\'alov\'a, Alice},
     title = {Bodov\'e konstrukce elipsy zalo\v{z}en\'e na afinit\v{e} mezi kru\v{z}nic{\'\i} a elipsou},
     journal = {U\v{c}itel matematiky},
     pages = {141--160},
     year = {2015},
     volume = {23},
     number = {3},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/UM_2015_23_3_a1/}
}
TY  - JOUR
AU  - Králová, Alice
TI  - Bodové konstrukce elipsy založené na afinitě mezi kružnicí a elipsou
JO  - Učitel matematiky
PY  - 2015
SP  - 141
EP  - 160
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UM_2015_23_3_a1/
LA  - cs
ID  - UM_2015_23_3_a1
ER  - 
%0 Journal Article
%A Králová, Alice
%T Bodové konstrukce elipsy založené na afinitě mezi kružnicí a elipsou
%J Učitel matematiky
%D 2015
%P 141-160
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/UM_2015_23_3_a1/
%G cs
%F UM_2015_23_3_a1
Králová, Alice. Bodové konstrukce elipsy založené na afinitě mezi kružnicí a elipsou. Učitel matematiky, Tome 23 (2015) no. 3, pp. 141-160. http://geodesic.mathdoc.fr/item/UM_2015_23_3_a1/

[1] Urban, A.: Deskriptivní geometrie I. (1965). Praha: SNTL.

[2] Piska, R., Medek, V.: Deskriptivní geometrie I. (1966). Praha: SNTL.

[3] Kraemer, E.: Zobrazovací metody (promítání rovnoběžné) I. díl. (1991) Praha: SPN. ISBN 80-04-21778-8.

[4] Borecká, K.: Konstruktivní geometrie. et al. (2002). Brno: Akademické nakladatelství CERM, s.r.o. ISBN 80-214-2205-X.

[5] Wikipedia.org: http://en.wikipedia.org/wiki/Ellipse</b>