Interpolation with minimum value of $L_{2}$-norm of differential operator
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 107-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the class of bounded in $l_{2}$-norm interpolated data, we consider a problem of interpolation on a finite interval $[a,b]\subset\mathbb{R}$ with minimal value of the $L_{2}$-norm of a differential operator applied to interpolants. Interpolation is performed at knots of an arbitrary $N$-point mesh $\Delta_{N}:\ a\leq x_{1}$. The extremal function is the interpolating natural ${\mathcal L}$-spline for an arbitrary fixed set of interpolated data. For some differential operators with constant real coefficients, it is proved that on the class of bounded in $l_{2}$-norm interpolated data, the minimal value of the $L_{2}$-norm of the differential operator on the interpolants is represented through the largest eigenvalue of the matrix of a certain quadratic form.
Keywords: Natural ${\mathcal L}$-spline, Differential operator, Reproducing kernel, Quadratic form.
Mots-clés : Interpolation
@article{UMJ_2024_10_2_a9,
     author = {Sergey I. Novikov},
     title = {Interpolation with minimum value of $L_{2}$-norm of differential operator},
     journal = {Ural mathematical journal},
     pages = {107--120},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a9/}
}
TY  - JOUR
AU  - Sergey I. Novikov
TI  - Interpolation with minimum value of $L_{2}$-norm of differential operator
JO  - Ural mathematical journal
PY  - 2024
SP  - 107
EP  - 120
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a9/
LA  - en
ID  - UMJ_2024_10_2_a9
ER  - 
%0 Journal Article
%A Sergey I. Novikov
%T Interpolation with minimum value of $L_{2}$-norm of differential operator
%J Ural mathematical journal
%D 2024
%P 107-120
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a9/
%G en
%F UMJ_2024_10_2_a9
Sergey I. Novikov. Interpolation with minimum value of $L_{2}$-norm of differential operator. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 107-120. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a9/

[1] Bezhaev A. Yu., Vasilenko V. A., Variation Spline Theory, Ser. Numer. Anal., Bulletin no. 3, NCC Publisher, Novosibirsk, 1993, 258 pp. | MR

[2] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:1–4 (1940), 281–306 (in French) | MR | Zbl

[3] Fichtenholz G.M., Kurs differencial'nogo i integral'nogo ischisleniya [Course of Differential and Integral Calculus], v. 1, Nauka Publ., Moscow, 1970, 608 pp. (in Russian) | MR

[4] Fisher S. D., Jerome J. W., Minimum Norm Extremals in Function Spaces: With Applications to Classical and Modern Analysis, Lecture Notes in Math., no. 479, 1975, 214 pp. | DOI | MR | Zbl

[5] Jerome J. W., Schumaker L. L., “A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent”, SIAM J. Numer. Anal., 5:4 (1968), 657–663 | DOI | MR

[6] Karlin S., Total Positivity, v. 1, London, 1968, 576 pp. | Zbl

[7] Karlin S., Studden W J., Tchebycheff Systems: With Applications in Analysis and Statistics, Pure and Appl. Math., no. 15, Interscience, New York, 1966, 586 pp. | MR | Zbl

[8] Malozyomov V.N., Pevny A.B., Polinomial'nye splajny [Polynomial Splines], Leningrad State University, Leningrad, 1986, 120 pp. (in Russian) | MR

[9] Novikov S. I., “Optimal interpolation on an interval with the smallest mean-square norm of the $r$-th derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 217–228 (in Russian) | DOI | MR

[10] Novikov S. I., “Periodic interpolation with minimal norm of $m$-th derivative”, Sib. Zh. Vychisl. Math., 9:2 (2006), 165–172 (in Russian) | Zbl

[11] Novikov S. I., “On an interpolation problem with the smallest $L_{2}$-norm of the Laplace operator”, Proc. Steklov Inst. Math., 319:Suppl. 1 (2022), S193–S203 | DOI | MR | Zbl

[12] Parodi M., La Localisation des Valeurs Caractéristiques des Matrices et ses Applications, Gauthier Villars, Paris, 1959, 172 pp. (in French) | MR

[13] Pevnyi A. B., “Natural splines of two and three variables”, Metody Vychisl., 1985, no. 14, 160–170 (in Russian) | MR | Zbl

[14] Rozhenko A. I., Abstraktnaya teoriya splajnov [Abstract Theory of Splines], Publ. Center of Novosibirsk State University, Novosibirsk, 1999, 177 pp. (in Russian)

[15] Shevaldin V. T., “Subbotin's splines in the problem of extremal interpolation in the space $L_{p}(\mathbb{R})$ for second-order linear differential operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 255–262 (in Russian) | DOI | MR

[16] Shevaldin V. T., “Extremal interpolation with the least value of the norm of the second derivative in $L_{p}(\mathbb{R})$”, Izv. Math., 86:1 (2022), 203–219 | DOI | MR | Zbl

[17] Subbotin Yu. N., “Functional interpolation in the mean with smallest $n$ derivative”, Proc. Steklov Inst. Math., 88 (1967), 31–63 | MR | Zbl

[18] Subbotin Yu. N., Novikov S. I., Shevaldin V. T., “Extremal function interpolation and splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 200–225 (in Russian) | DOI | MR

[19] Tarazaga P., “Eigenvalue estimates for symmetric matrices”, Linear Algebra Appl., 135:1 (1990), 171–179 | DOI | MR | Zbl

[20] Tikhomirov V. M., Bojanov B. D., “On some convex problems of approximation theory”, Serdica, 5 (1979), 83–96 (in Russian) | MR | Zbl

[21] Vladimirov V. S., Uravneniya matematicheskoj fiziki [Equations of Mathematical Physics], Moscow, 512 pp. (in Russian) | MR