Trajectories of dynamic equilibrium and replicator dynamics in coordination games
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 92-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper analyzes average integral payoff indices for trajectories of the dynamic equilibrium and replicator dynamics in bimatrix coordination games. In such games, players receive large payoffs when choosing the same type of behavior. A special feature of a $2\times2$ coordination game is the presence of three static Nash equilibria. In the dynamic formulation, the trajectories of coordination games are estimated by the average integral payoffs for a wide range of models arising in economics and biology. In optimal control problems and dynamic games, average integral payoffs are used to synthesize guaranteed strategies, which are involved, among other things, in the constructions of the dynamic Nash equilibrium. In addition, average integral payoffs are a natural tool for assessing the quality of trajectories of replicator dynamics. In the paper, we compare values of average integral indices for trajectories of replicator dynamics and trajectories generated by guaranteed strategies in constructing the dynamic Nash equilibrium. An analysis is provided for trajectories of mixed dynamics when the first player plays a guaranteed strategy, and the behavior of replicator dynamics guides the second player.
Keywords: Coordination games, Average integral payoffs, Guaranteed strategies, Replicator dynamics, Dynamic Nash equilibrium
Mots-clés : Dynamic bimatrix games
@article{UMJ_2024_10_2_a8,
     author = {Nikolay A. Krasovskii and Alexander M. Tarasyev},
     title = {Trajectories of dynamic equilibrium and replicator dynamics in coordination games},
     journal = {Ural mathematical journal},
     pages = {92--106},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/}
}
TY  - JOUR
AU  - Nikolay A. Krasovskii
AU  - Alexander M. Tarasyev
TI  - Trajectories of dynamic equilibrium and replicator dynamics in coordination games
JO  - Ural mathematical journal
PY  - 2024
SP  - 92
EP  - 106
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/
LA  - en
ID  - UMJ_2024_10_2_a8
ER  - 
%0 Journal Article
%A Nikolay A. Krasovskii
%A Alexander M. Tarasyev
%T Trajectories of dynamic equilibrium and replicator dynamics in coordination games
%J Ural mathematical journal
%D 2024
%P 92-106
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/
%G en
%F UMJ_2024_10_2_a8
Nikolay A. Krasovskii; Alexander M. Tarasyev. Trajectories of dynamic equilibrium and replicator dynamics in coordination games. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 92-106. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/

[1] Arnold V. I., “Optimization in mean and phase transitions in controlled dynamical systems”, Funct. Anal. Appl., 36:2 (2002), 83–92 | DOI | MR | Zbl

[2] Bratus A. S., Novozhilov A. S., Platonov A. P., Dinamicheskiye systemy i modeli biologii [Dynamic Systems and Models of Biology], Fizmatlit, Moscow, 2010, 400 pp. (in Russian)

[3] Hofbauer J., Sigmund K., The Theory of Evolution and Dynamical Systems, Cambridge Univ. Press, Cambridge etc., 1988, 341 pp. | DOI | MR | Zbl

[4] Kleimenov A. F., Neantagonisticheskiye pozitsionniye differentsial'niye igry [Non-antagonistic Positional Differential Games], Nauka, Yekaterinburg, 1993, 185 pp. (in Russian) | MR

[5] Krasovskii A. N., Krasovskii N. N., Control Under Lack of Information, Burkhäuser, Boston, 1995, 322 pp. | DOI | MR

[6] Krasovskii N. A., Tarasyev A. M., “Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals”, Autom. Remote Control, 79:6 (2018), 1148–1167 | DOI | MR

[7] Krasovskii N. N., Upravleniye dinamicheskoy sistemoy [Control of Dynamic System], Nauka, Moscow, 1985, 520 pp. (in Russian) | MR

[8] Krasovskii N. N., Subbotin A. I., Game–Theoretical Control Problems, Springer–Verlag, New-York, 1988, 517 pp. | MR | Zbl

[9] Mazalov V. V., Rettieva A. N., “Application of bargaining schemes for equilibrium determination in dynamic games”, Mat. Teor. Igr Pril., 15:2 (2023), 75–88 (in Russian) | MR

[10] Mertens J.-F., Sorin S., Zamir S., Repeated Games, Cambridge University Press, Cambridge, 2015, 567 pp. | MR | Zbl

[11] Petrosjan L. A., Zenkevich N. A., “Conditions for sustainable cooperation”, Autom. Remote Control, 76 (2015), 1894–1904 | DOI | MR

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., The Mathematical Theory of Optimal Processes, Wiley Interscience, New-York, 1962, 360 pp. | MR | Zbl

[13] Sorin S., “Replicator dynamics: old and new”, J. Dynam. Games, 7:4 (2020), 365–386 | DOI | MR | Zbl

[14] Vinnikov E. V., Davydov A. A., Tunitskiy D. V., “Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse harvesting”, Dokl. Math., 108:3 (2023), 472–476 | DOI | MR | Zbl

[15] Vorobyev N. N., Teoriya igr dlya ekonomistov—kibernetikov [The Theory of Games for Economists–Cyberneticians], Nauka, Moscow, 1985, 272 pp. (in Russian) | MR

[16] Yakushkina T. S., “A distributed replicator system corresponding to a bimatrix game”, Moscow Univ. Comput. Math. Cybernet., 40:1 (2016), 19–27 | DOI | MR | Zbl