Trajectories of dynamic equilibrium and replicator dynamics in coordination games
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 92-106
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper analyzes average integral payoff indices for trajectories of the dynamic equilibrium and replicator dynamics in bimatrix coordination games. In such games, players receive large payoffs when choosing the same type of behavior. A special feature of a $2\times2$ coordination game is the presence of three static Nash equilibria. In the dynamic formulation, the trajectories of coordination games are estimated by the average integral payoffs for a wide range of models arising in economics and biology. In optimal control problems and dynamic games, average integral payoffs are used to synthesize guaranteed strategies, which are involved, among other things, in the constructions of the dynamic Nash equilibrium. In addition, average integral payoffs are a natural tool for assessing the quality of trajectories of replicator dynamics. In the paper, we compare values of average integral indices for trajectories of replicator dynamics and trajectories generated by guaranteed strategies in constructing the dynamic Nash equilibrium. An analysis is provided for trajectories of mixed dynamics when the first player plays a guaranteed strategy, and the behavior of replicator dynamics guides the second player.
Keywords:
Coordination games, Average integral payoffs, Guaranteed strategies, Replicator dynamics, Dynamic Nash equilibrium
Mots-clés : Dynamic bimatrix games
Mots-clés : Dynamic bimatrix games
@article{UMJ_2024_10_2_a8,
author = {Nikolay A. Krasovskii and Alexander M. Tarasyev},
title = {Trajectories of dynamic equilibrium and replicator dynamics in coordination games},
journal = {Ural mathematical journal},
pages = {92--106},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/}
}
TY - JOUR AU - Nikolay A. Krasovskii AU - Alexander M. Tarasyev TI - Trajectories of dynamic equilibrium and replicator dynamics in coordination games JO - Ural mathematical journal PY - 2024 SP - 92 EP - 106 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/ LA - en ID - UMJ_2024_10_2_a8 ER -
%0 Journal Article %A Nikolay A. Krasovskii %A Alexander M. Tarasyev %T Trajectories of dynamic equilibrium and replicator dynamics in coordination games %J Ural mathematical journal %D 2024 %P 92-106 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/ %G en %F UMJ_2024_10_2_a8
Nikolay A. Krasovskii; Alexander M. Tarasyev. Trajectories of dynamic equilibrium and replicator dynamics in coordination games. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 92-106. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a8/