Mots-clés : Cesàro mean
@article{UMJ_2024_10_2_a7,
author = {Bidu Bhusan Jena and Priyadarsini Parida and Susanta Kumar Paikray},
title = {Tauberian theorem for general matrix summability method},
journal = {Ural mathematical journal},
pages = {81--91},
year = {2024},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a7/}
}
TY - JOUR AU - Bidu Bhusan Jena AU - Priyadarsini Parida AU - Susanta Kumar Paikray TI - Tauberian theorem for general matrix summability method JO - Ural mathematical journal PY - 2024 SP - 81 EP - 91 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a7/ LA - en ID - UMJ_2024_10_2_a7 ER -
Bidu Bhusan Jena; Priyadarsini Parida; Susanta Kumar Paikray. Tauberian theorem for general matrix summability method. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 81-91. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a7/
[1] Ananda-Rau K., “An example in the theory of summation of series by Riesz's typical means”, Proc. Lond. Math. Soc., s2-30:1 (1930), 367–372 | DOI | MR
[2] Çanak İ., “A theorem on the Cesàro summability method”, Comput. Math. Appl., 61:4 (2011), 1162–1166 | DOI | MR
[3] Çanak İ., “A theorem for convergence of generator sequences”, Comput. Math. Appl., 61:2 (2011), 408–411 | DOI | MR
[4] Çanak İ., “An extended Tauberian theorem for the $(C, 1)$ summability method”, Appl. Math. Lett., 21:1 (2008), 74–80 | DOI | MR
[5] Çanak İ., Totur Ü., “Some Tauberian conditions for Cesàro summability method”, Math. Slovaca, 62:2 (2012), 271–280 | DOI | MR
[6] Çanak İ., Totur Ü., “Some Tauberian theorems for the weighted mean methods of summability”, Comput. Math. Appl., 62:6 (2011), 2609–2615 | DOI | MR
[7] Çanak İ., Totur Ü., “A condition under which slow oscillation of a sequence follows from Cesàro summability of its generator sequence”, Appl. Math. Comput., 216:5 (2010), 1618–1623 | DOI | MR
[8] Çanak İ., Totur Ü., “A note on Tauberian theorems for regularly generated sequences”, Tamkang J. Math., 39:2 (2008), 187–191 | DOI | MR
[9] Dik M., “Tauberian theorems for sequences with moderately oscillatory control modulo”, Math. Moravica, 5 (2001), 57–94 | DOI | MR | Zbl
[10] Hardy G. H., Divergent Series, Clarendon Press, Oxford, 1949, 396 pp. | MR | Zbl
[11] Hardy G. H., Littlewood J. E., “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. Lond. Math. Soc., s2-13:1 (1914), 174–191 | DOI | MR
[12] Jakimovski A., “On a Tauberian theorem by O. Szász”, Proc. Amer. Math. Soc., 5:1 (1954), 67–70 | DOI | MR | Zbl
[13] Jena B. B., Paikray S. K., Misra U. K., “Inclusion theorems on general convergence and statistical convergence of $(L,1,1)$-summability using generalized Tauberian conditions”, Tamsui Oxf. J. Inf. Math. Sci., 31:1 (2017), 101–115 | MR
[14] Jena B. B., Paikray S. K., Misra U. K., “A Tauberian theorem for double Cesàro summability method”, Int. J. Math. Math. Sci., 2016 (2016), 2431010, 1–4 | DOI | MR
[15] Jena B. B., Paikray S. K., Misra U. K., “A proof of Tauberian theorem for Cesàro summability method”, Asian J. Math. Comput. Res., 2016. Vol. 8,, no. 3., 272–276. | MR
[16] Jena B. B., Paikray S. K., Parida P., Dutta H., “Results on Tauberian theorem for Cesàro summable double sequences of fuzzy numbers”, Kragujevac J. Math., 44:4 (2020), 495–508 | DOI | MR | Zbl
[17] Kratz W., Stadtmüller U., “Tauberian theorems for $J_{p}$-summability”, J. Math. Anal. Appl., 1989 vol 139, no. 2, 362–371 | DOI | MR | Zbl
[18] Kratz W., Stadtmüller U., “Tauberian theorems for general $J_{p}$-methods and a characterization of dominated variation”, J. Lond. Math. Soc. (2), s2–39:1 (1989), 145–159 | DOI | MR | Zbl
[19] Landau E., “Über einen Satz des herrn Littlewood”, Rend. Circ. Matem. Palermo, 35 (1913), 265–276 | DOI
[20] Littlewood J. E., “The converse of Abel's theorem on power series”, Proc. Lond. Math. Soc., s2-9:2 (1911), 434–448 | DOI | MR
[21] Móricz F., Rhoades B. E., “Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability”, Acta Math. Hung., 66 (1995), 105–111 | DOI | MR
[22] Parida P., Paikray S. K., Jena B. B., “Statistical Tauberian theorems for Cesàro integrability mean based on post-quantum calculus”, Arab. J. Math., 9 (2020), 653–663 | DOI | MR | Zbl
[23] Parida P., Paikray S. K., Jena B. B., “Tauberian theorems for statistical Cesàro summability of function of two variables over a locally convex space”, Recent Advances in Intelligent Information Systems and Applied Mathematics (ICITAM 2019), Stud. Comput. Intell., no. 863, eds. O. Castillo and al., Springer, Cham, 2020, 779–790 | DOI | MR | Zbl
[24] Parida P., Paikray S. K., Dutta H., Jena B. B., Dash M., “Tauberian theorems for Cesàro summability of $n$-th sequences”, Filomat, 32:11 (2018), 3993–4004 | DOI | MR | Zbl
[25] Schmidt R., “Über divergente Folgen und lineare Mittelbildungen”, Math. Z., 22 (1925), 89–152 (in German) | DOI | MR
[26] Szász O., “On a Tauberian theorem for Abel summability”, Pacific J. Math., 1:1 (1951), 117–125 | DOI | MR | Zbl
[27] Tauber A., “Ein Satz aus der Theorie der unendlichen Reihen”, Monatsh. Math., 8 (1897), 273–277 (in German) | DOI | MR
[28] Totur Ü., Dik M., “One-sided Tauberian conditions for a general summability method”, Math. Comput. Model., 54:11–12 (2011), 2639–2644 | DOI | MR | Zbl
[29] Tietz H., “Schmidtsche Umkehrbedingungen für Potenzreihenverfahren”, Acta Sci. Math., 54 (1990), 355–365 (in German) | MR | Zbl
[30] Tietz H., Trautner R. Tauber, “Sätze für Potenzreihenverfahren”, Arch. Math., 50 (1988), 164–174 (in German) | DOI | MR | Zbl
[31] Tietz H., Zeller K., “Tauber-Bedingungen für Verfahren mit Abschnittskonvergenz”, Acta Math. Hungar., 81 (1998), 241–247 (in German) | DOI | MR | Zbl