$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is to present and explore some of properties of the concept of $\mathcal{I}$-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of $\mathcal{I}$-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every $\mathcal{I}$-statistically convergent sequence in measure is $\mathcal{I}$-statistically Cauchy sequence in measure, but the converse is not necessarily true.
Keywords: $\mathcal{I}$-convergence, $\mathcal{I}$-statistical convergence, Uncertainty theory, Complex uncertain variable
@article{UMJ_2024_10_2_a6,
     author = {Amit Halder and Shyamal Debnath},
     title = {$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure},
     journal = {Ural mathematical journal},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/}
}
TY  - JOUR
AU  - Amit Halder
AU  - Shyamal Debnath
TI  - $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
JO  - Ural mathematical journal
PY  - 2024
SP  - 69
EP  - 80
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/
LA  - en
ID  - UMJ_2024_10_2_a6
ER  - 
%0 Journal Article
%A Amit Halder
%A Shyamal Debnath
%T $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
%J Ural mathematical journal
%D 2024
%P 69-80
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/
%G en
%F UMJ_2024_10_2_a6
Amit Halder; Shyamal Debnath. $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/