$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80
Voir la notice de l'article provenant de la source Math-Net.Ru
The main aim of this paper is to present and explore some of properties of the concept of $\mathcal{I}$-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of $\mathcal{I}$-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every $\mathcal{I}$-statistically convergent sequence in measure is $\mathcal{I}$-statistically Cauchy sequence in measure, but the converse is not necessarily true.
Keywords:
$\mathcal{I}$-convergence, $\mathcal{I}$-statistical convergence, Uncertainty theory, Complex uncertain variable
@article{UMJ_2024_10_2_a6,
author = {Amit Halder and Shyamal Debnath},
title = {$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure},
journal = {Ural mathematical journal},
pages = {69--80},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/}
}
TY - JOUR
AU - Amit Halder
AU - Shyamal Debnath
TI - $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
JO - Ural mathematical journal
PY - 2024
SP - 69
EP - 80
VL - 10
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/
LA - en
ID - UMJ_2024_10_2_a6
ER -
Amit Halder; Shyamal Debnath. $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/