$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of this paper is to present and explore some of properties of the concept of $\mathcal{I}$-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of $\mathcal{I}$-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every $\mathcal{I}$-statistically convergent sequence in measure is $\mathcal{I}$-statistically Cauchy sequence in measure, but the converse is not necessarily true.
Keywords: $\mathcal{I}$-convergence, $\mathcal{I}$-statistical convergence, Uncertainty theory, Complex uncertain variable
@article{UMJ_2024_10_2_a6,
     author = {Amit Halder and Shyamal Debnath},
     title = {$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure},
     journal = {Ural mathematical journal},
     pages = {69--80},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/}
}
TY  - JOUR
AU  - Amit Halder
AU  - Shyamal Debnath
TI  - $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
JO  - Ural mathematical journal
PY  - 2024
SP  - 69
EP  - 80
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/
LA  - en
ID  - UMJ_2024_10_2_a6
ER  - 
%0 Journal Article
%A Amit Halder
%A Shyamal Debnath
%T $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure
%J Ural mathematical journal
%D 2024
%P 69-80
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/
%G en
%F UMJ_2024_10_2_a6
Amit Halder; Shyamal Debnath. $\mathcal{I}$-statistical convergence of complex uncertain sequences in measure. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a6/

[1] Chen X., Ning Y., Wang X., “Convergence of complex uncertain sequences”, J. Intell. Fuzzy Syst., 30:6 (2016), 3357–3366 | DOI | Zbl

[2] Debnath S., Das B., “Statistical convergence of order $\alpha$ for complex uncertain sequences”, J. Uncertain Syst., 14:2 (2021), 2150012 | DOI | MR

[3] Debnath S., Das B., “On $\lambda$-statistical convergence of order $\alpha$ for complex uncertain sequences”, Int. J. Gen. Syst., 52:2 (2022), 191–202 | DOI | MR

[4] Debnath S., Das B., “On rough statistical convergence of complex uncertain sequences”, New Math. Nat. Comput., 19:1 (2023), 1–17 | DOI | MR

[5] Debnath S., Debnath J., “On $\mathcal{I}$-statistically convergent sequence spaces defined by sequence of Orlicz functions using matrix transformation”, Proyecciones J. Math., 33:3 (2014), 277–285 | DOI | MR | Zbl

[6] Debnath S., Rakshit D., “On $\mathcal{I}$-statistical convergence”, Iranian J. Math. Sci. Inform., 13:2 (2018), 101–109 | DOI | MR | Zbl

[7] Esi A., Debnath S., Saha S., “Asymptotically double $\lambda_{2}$-statistically equivalent sequences of interval numbers”, Mathematica, 62(85):1 (2020), 39–46 | DOI | MR | Zbl

[8] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241–244 (in French) | DOI | MR | Zbl

[9] Fridy J. A., “On statistically convergence”, Analysis, 5:4 (1985), 301–313 | DOI | MR | Zbl

[10] Kişi Ö., “$S_{\lambda}(\mathcal{I})$-convergence of complex uncertain sequences”, Mat. Stud., 51:2. (2019), 183–194 | MR | Zbl

[11] Kostyrko P., Wilczyński W., Šalát T., “$\mathcal{I}$-convergence”, Real Anal. Exchange, 26:2 (2000/2001), 669–686 | DOI | MR

[12] Liu B., Uncertainty Theory, 4th ed., Springer-Verlag, Berlin, Heidelberg, 2015, 487 pp. | DOI | MR | Zbl

[13] Mursaleen M., Debnath S., Rakshit D., “$\mathcal{I}$-statistical limit superior and $\mathcal{I}$-statistical limit inferior”, Filomat, 31:7 (2017), 2103–2108 | DOI | MR | Zbl

[14] Nath P. K., Tripathy B. C., “Convergent complex uncertain sequences defined by Orlicz function”, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 46:1 (2019), 139–149 | MR | Zbl

[15] Peng Z., Complex Uncertain Variable, PhD, Tsinghua University, 2012

[16] Roy S., Tripathy B. C., Saha S., “Some results on $p$-distance and sequence of complex uncertain variables”, Commun. Korean. Math. Soc., 35:3 (2020), 907–916 | DOI | MR | Zbl

[17] Saha S., Tripathy B. C., Roy S., “On almost convergence of complex uncertain sequences”, New Math. Nat. Comput., 16:03 (2016), 573–580 | DOI | MR

[18] Savas E., Das P., “A generalized statistical convergence via ideals”, App. Math. Lett., 24:6 (2011), 826–830 | DOI | MR | Zbl

[19] Savas E., Das P., “On $\mathcal{I}$-statistically pre-Cauchy sequences”, Taiwanese J. Math., 18:1 (2014), 115–126 | DOI | MR | Zbl

[20] Savas E., Debnath S., Rakshit D., “On $\mathcal{I}$-statistically rough convergence”, Publ. Inst. Math., 105:119 (2019), 145–150 | DOI | MR | Zbl

[21] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloq. Math., 2:1 (1951), 73–74 (in French) | MR

[22] Tripathy B. C., Nath P. K., “Statistical convergence of complex uncertain sequences”, New Math. Nat. Comput., 13:3 (2017), 359–374 | DOI | MR | Zbl

[23] You C., Yan L., “Relationships among convergence concepts of uncertain sequences”, Comput. Model. New Technol., 20:3 (2016), 12–16

[24] Wu J., Xia Y., “Relationships among convergence concepts of uncertain sequences”, Inform. Sci., 198 (2012), 177–185 | DOI | MR | Zbl