Graphical properties of clustered graphs
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 60-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Clustering is a strategy for discovering homogeneous clusters in heterogeneous data sets based on comparable structures or properties. The number of nodes or links that must fail for a network to be divided into two or more sub-networks is known as connectivity. In addition to being a metric of network dependability, connectivity also serves as an indicator of performance. The Euler graph can represent almost any issue involving a discrete arrangement of objects. It can be analyzed using the recent field of mathematics called graph theory. This paper discusses the properties of clustered networks like connectivity and chromaticity. Further, the structure of the antipodal graph in the clustered network has been explored.
Keywords: Clustered graph
Mots-clés : Euler graph, Antipodal graph
@article{UMJ_2024_10_2_a5,
     author = {Sambanthan Gurunathan and Thangaraj Yogalakshmi},
     title = {Graphical properties of clustered graphs},
     journal = {Ural mathematical journal},
     pages = {60--68},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a5/}
}
TY  - JOUR
AU  - Sambanthan Gurunathan
AU  - Thangaraj Yogalakshmi
TI  - Graphical properties of clustered graphs
JO  - Ural mathematical journal
PY  - 2024
SP  - 60
EP  - 68
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a5/
LA  - en
ID  - UMJ_2024_10_2_a5
ER  - 
%0 Journal Article
%A Sambanthan Gurunathan
%A Thangaraj Yogalakshmi
%T Graphical properties of clustered graphs
%J Ural mathematical journal
%D 2024
%P 60-68
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a5/
%G en
%F UMJ_2024_10_2_a5
Sambanthan Gurunathan; Thangaraj Yogalakshmi. Graphical properties of clustered graphs. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 60-68. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a5/

[1] Abd-El-Barr M., “Topological network design: A survey”, J. Netw. Comp. Appl., 32:3 (2009), 501–509 | DOI

[2] Al-Kuwaiti M., Kyriakopoulos N., Hussein S., “A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability”, IEEE Communications Surveys Tutorials, 11:2 (2009), 106–124 | DOI

[3] Aravamudhan R., Rajendran B., “On antipodal graphs”, Discrete Math., 49:2 (1984), 193–195 | DOI | MR | Zbl

[4] Chartrand G., Lesniak L., Zhang P., Graphs Digraphs, 5rd, New York, 2010, 598. pp. | DOI | MR

[5] Chen Y.-C., Tan J. J. M., Hsu L.-H., Kao S.-S., “Super-connectivity and super-edge-connectivity for some interconnection networks”, Appl. Math. Comput., 140:2–3 (2003), 245–254 | DOI | MR | Zbl

[6] Elghazel W., Bahi J., Guyeux C., Hakem M., Medjaher K., Zerhouni N., “Dependability of wireless sensor networks for industrial prognostics and health management”, Compu. Ind., 68 (2015), 1–15 | DOI

[7] Esfahanian A.-H., Hakimi S. L., “On computing a conditional edge-connectivity of a graph”, Inform. Process. Lett., 27:4 (1988), 195–199 | DOI | MR | Zbl

[8] Fàbrega J., Fiol M. A., “On the extraconnectivity of graphs”, Discrete Math., 1996, no. 1–3, 155 | DOI | MR

[9] Harary F., “Conditional connectivity”, Networks, 13:3 (1983), 347–357 | DOI | MR | Zbl

[10] Guo L., Liu R., Guo X., “Super connectivity and super edge connectivity of the Mycielskian of a graph”, Graphs Combin., 28:2 (2012), 143–147 | DOI | MR | Zbl

[11] Gurunathan S., Yogalakshmi T., “Statistical analysis on the topological indices of clustered graphs”, Proc. Int. Conf. on Paradigms of Communication, Computing and Data Sciences. Algorithms for Intelligent Systems, eds. Dua M., Jain A.K., Yadav A., Kumar N., Siarry P., Springer, Singapore, 2022, 379–388 | DOI

[12] Gurunathan S., Yogalakshmi T., Balasubramanian K., “Topological characterization of statistically clustered networks for molecular similarity analysis”, J. Math. Chem., 61 (2023), 859–876 | DOI | MR | Zbl

[13] Latifi S., Hegde M., Naraghi-Pour M., “Conditional connectivity measures for large multiprocessor systems”, IEEE Trans. Comput., 43:2 (1994), 218–222 | DOI | MR

[14] Li X., Mao Y., A Survey on the Generalized Connectivity of Graphs, 2012, 51 pp., arXiv: [math.CO] 1207.1838v10 | MR

[15] Lü M., Chen G.-L., Xu J.-M., “On super edge-connectivity of Cartesian product graphs”, Networks, 49:2 (2007), 152–157 | DOI | MR | Zbl

[16] Shen C., Liu Y., “A tripartite clustering analysis on microRNA, gene and disease model”, J. Bioinf. Comp. Biol., 10:1 (2012), 1240007 | DOI

[17] Ustunbas Y., Öguducu S. G., “A recommendation model for social resource sharing systems based on tripartite graph clustering”, 2011 European Intelligence and Security Informatics Conference, 12–14 September 2011, Athens, Greece, IEEE Xplore, 2011, 378–381 | DOI

[18] Wang M., Li Q., “Conditional edge connectivity properties, reliability comparisons and transitivity of graphs”, Discrete Math., 258:1–3 (2002), 205–214 | DOI | MR | Zbl

[19] Xu J.-M., Wang J.-W., Wang W.-W., “On super and restricted connectivity of some interconnection networks”, Ars Combin., 94:6 (2010), 25–32 | MR | Zbl