Statistical convergence in topological space controlled by modulus function
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he notion of $f$-statistical convergence in topological space, which is actually a statistical convergence's generalization under the influence of unbounded modulus function is presented and explored in this paper. This provides as an intermediate between statistical and typical convergence. We also present many counterexamples to highlight the distinctions among several related topological features. Lastly, this paper is concerned with the notions of $s^{f}$-limit point and $s^{f}$-cluster point for a unbounded modulus function $f$.
Keywords: Asymptotic density, $f$-statistical convergence, $f$-statistical limit point, $f$-statistical cluster point.
@article{UMJ_2024_10_2_a4,
     author = {Parthiba Das and Susmita Sarkar and Prasenjit Bal},
     title = {Statistical convergence in topological space controlled by modulus function},
     journal = {Ural mathematical journal},
     pages = {49--59},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/}
}
TY  - JOUR
AU  - Parthiba Das
AU  - Susmita Sarkar
AU  - Prasenjit Bal
TI  - Statistical convergence in topological space controlled by modulus function
JO  - Ural mathematical journal
PY  - 2024
SP  - 49
EP  - 59
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/
LA  - en
ID  - UMJ_2024_10_2_a4
ER  - 
%0 Journal Article
%A Parthiba Das
%A Susmita Sarkar
%A Prasenjit Bal
%T Statistical convergence in topological space controlled by modulus function
%J Ural mathematical journal
%D 2024
%P 49-59
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/
%G en
%F UMJ_2024_10_2_a4
Parthiba Das; Susmita Sarkar; Prasenjit Bal. Statistical convergence in topological space controlled by modulus function. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 49-59. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/

[1] Bal P., Rakshit D., “A variation of the class of statistical $\gamma$ covers”, Topol. Algebra Appl., 11:1 (2023), 20230101 | DOI | MR | Zbl

[2] Bal P., Rakshit D., Sarkar S., “Countable compactness modulo an ideal of natural numbers”, Ural Math. J., 9:2 (2023), 28–35 | DOI | MR | Zbl

[3] Bal P., Rakshit D., Sarkar S., “On strongly star semi-compactness of topological spaces”, Khayyam J. Math., 9:1 (2023), 54–60 | MR | Zbl

[4] Bal P., “A countable intersection like characterization of Star-Lindelöf spaces”, Researches in Math., 31:2 (2023), 3–7 | DOI | Zbl

[5] Bhardwaj B. K., Dhawan S., “Korovkin type approximation theorems via $f$-statistical convergence”, J. Math. Anal., 9:2 (2018), 99–117 | MR

[6] Bhunia S., Das P., Pal S. K., “Restricting statistical convergence”, Acta Math. Hung., 134:1–2 (2012), 153–161 | DOI | MR | Zbl

[7] Çolak R., “Statistical convergence of order $\alpha$”, Modern Methods in Analysis and Its Applications, ed. M. Mursaleen, Anamaya Publ., New Delhi, 2010, 121–129

[8] Çolak R., Bektaş Ç. A., “$\lambda$-statistical convergence of order $\alpha$”, Acta Math. Sci. Ser. B, Engl. Ed., 31:3 (2011), 953–959 | DOI | MR | Zbl

[9] Connor J. S., “The statistical and strong $p$-Cesaro convergence of sequences”, Analysis, 8:1–2 (1988), 47–63 | DOI | MR | Zbl

[10] Das P., “Certain types of open covers and selection principles using ideals”, Houston J. Math., 39:2 (2013), 637–650 | MR | Zbl

[11] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989, 529 pp. | MR | Zbl

[12] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241—244 (in French) | DOI | MR | Zbl

[13] Fridy J. A., “On statistical convergence”, Analysis, 5:4 (1985), 301–313 | DOI | MR | Zbl

[14] Lahiri B. K., Das P., “$I$ and $I^{\ast}$ convergence in topological spaces”, Math. Bohem., 130:2 (2005), 153–160 | DOI | MR | Zbl

[15] Maio G. D., Kočinac L. D. R., “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | MR | Zbl

[16] S̆alát T., “On statistically convergent sequences of real numbers”, Math. Slovaca, 30:2 (1980), 139–150 | MR | Zbl

[17] Schoenberg I. J., “The integrability of certain functions and related summability methods”, Amer. Math. Monthly, 66:5 (1959), 361–375 | DOI | MR | Zbl

[18] Zygmund A., Trigonometrical Series, Monogr. Mat., Warszawa, vol. 5., PWN-Panstwowe Wydawnictwo Naukowe, Warszawa, 1935, 332 pp.