@article{UMJ_2024_10_2_a4,
author = {Parthiba Das and Susmita Sarkar and Prasenjit Bal},
title = {Statistical convergence in topological space controlled by modulus function},
journal = {Ural mathematical journal},
pages = {49--59},
year = {2024},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/}
}
TY - JOUR AU - Parthiba Das AU - Susmita Sarkar AU - Prasenjit Bal TI - Statistical convergence in topological space controlled by modulus function JO - Ural mathematical journal PY - 2024 SP - 49 EP - 59 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/ LA - en ID - UMJ_2024_10_2_a4 ER -
Parthiba Das; Susmita Sarkar; Prasenjit Bal. Statistical convergence in topological space controlled by modulus function. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 49-59. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a4/
[1] Bal P., Rakshit D., “A variation of the class of statistical $\gamma$ covers”, Topol. Algebra Appl., 11:1 (2023), 20230101 | DOI | MR | Zbl
[2] Bal P., Rakshit D., Sarkar S., “Countable compactness modulo an ideal of natural numbers”, Ural Math. J., 9:2 (2023), 28–35 | DOI | MR | Zbl
[3] Bal P., Rakshit D., Sarkar S., “On strongly star semi-compactness of topological spaces”, Khayyam J. Math., 9:1 (2023), 54–60 | MR | Zbl
[4] Bal P., “A countable intersection like characterization of Star-Lindelöf spaces”, Researches in Math., 31:2 (2023), 3–7 | DOI | Zbl
[5] Bhardwaj B. K., Dhawan S., “Korovkin type approximation theorems via $f$-statistical convergence”, J. Math. Anal., 9:2 (2018), 99–117 | MR
[6] Bhunia S., Das P., Pal S. K., “Restricting statistical convergence”, Acta Math. Hung., 134:1–2 (2012), 153–161 | DOI | MR | Zbl
[7] Çolak R., “Statistical convergence of order $\alpha$”, Modern Methods in Analysis and Its Applications, ed. M. Mursaleen, Anamaya Publ., New Delhi, 2010, 121–129
[8] Çolak R., Bektaş Ç. A., “$\lambda$-statistical convergence of order $\alpha$”, Acta Math. Sci. Ser. B, Engl. Ed., 31:3 (2011), 953–959 | DOI | MR | Zbl
[9] Connor J. S., “The statistical and strong $p$-Cesaro convergence of sequences”, Analysis, 8:1–2 (1988), 47–63 | DOI | MR | Zbl
[10] Das P., “Certain types of open covers and selection principles using ideals”, Houston J. Math., 39:2 (2013), 637–650 | MR | Zbl
[11] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989, 529 pp. | MR | Zbl
[12] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241—244 (in French) | DOI | MR | Zbl
[13] Fridy J. A., “On statistical convergence”, Analysis, 5:4 (1985), 301–313 | DOI | MR | Zbl
[14] Lahiri B. K., Das P., “$I$ and $I^{\ast}$ convergence in topological spaces”, Math. Bohem., 130:2 (2005), 153–160 | DOI | MR | Zbl
[15] Maio G. D., Kočinac L. D. R., “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | MR | Zbl
[16] S̆alát T., “On statistically convergent sequences of real numbers”, Math. Slovaca, 30:2 (1980), 139–150 | MR | Zbl
[17] Schoenberg I. J., “The integrability of certain functions and related summability methods”, Amer. Math. Monthly, 66:5 (1959), 361–375 | DOI | MR | Zbl
[18] Zygmund A., Trigonometrical Series, Monogr. Mat., Warszawa, vol. 5., PWN-Panstwowe Wydawnictwo Naukowe, Warszawa, 1935, 332 pp.