Completely reachable almost group automata
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 37-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider finite deterministic automata such that their alphabets consist of exactly one letter of defect 1 and a set of permutations of the state set. We study under which conditions such an automaton is completely reachable. We focus our attention on the case when the set of permutations generates a transitive imprimitive group.
Keywords: Deterministic finite automata, Transition monoid, Complete reachability
Mots-clés : Permutation group
@article{UMJ_2024_10_2_a3,
     author = {David Fernando Casas Torres},
     title = {Completely reachable almost group automata},
     journal = {Ural mathematical journal},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/}
}
TY  - JOUR
AU  - David Fernando Casas Torres
TI  - Completely reachable almost group automata
JO  - Ural mathematical journal
PY  - 2024
SP  - 37
EP  - 48
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/
LA  - en
ID  - UMJ_2024_10_2_a3
ER  - 
%0 Journal Article
%A David Fernando Casas Torres
%T Completely reachable almost group automata
%J Ural mathematical journal
%D 2024
%P 37-48
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/
%G en
%F UMJ_2024_10_2_a3
David Fernando Casas Torres. Completely reachable almost group automata. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 37-48. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/