Mots-clés : Permutation group
@article{UMJ_2024_10_2_a3,
author = {David Fernando Casas Torres},
title = {Completely reachable almost group automata},
journal = {Ural mathematical journal},
pages = {37--48},
year = {2024},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/}
}
David Fernando Casas Torres. Completely reachable almost group automata. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 37-48. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a3/
[1] Ananichev D., Vorel V., “A new lower bound for reset threshold of binary synchronizing automata with sink”, J. Autom. Lang. Comb., 24:2–4 (2019), 153–164 | DOI | MR | Zbl
[2] André J. M., “Near permutation semigroups”, Semigroups and Languages, 2004, 43–53 | DOI | MR
[3] Berlinkov M. V., Nicaud C., “Synchronizing almost-group automata”, Internat. J. Found. Comput. Sci., 31:08 (2020), 1091–1112 | DOI | MR | Zbl
[4] Bondar E., Casas D., Volkov M., “Completely reachable automata: An interplay between automata, graphs, and trees”, Internat. J. Found. Comput. Sci., 34:06 (2023), 655–690 | DOI | MR | Zbl
[5] Bondar E. A., Volkov M. V., “Completely reachable automata”, Lecture Notes in Comput. Sci.: Descriptional Complexity of Formal Systems (DCFS 2016), v. 9777, eds. C. Câmpeanu, F. Manea, J. Shallit, Springer, Cham:, 2016, 1–17 | DOI | MR | Zbl
[6] Bondar E. A., Volkov M. V., “A characterization of completely reachable automata”, Lecture Notes in Comput. Sci.: Developments in Language Theory (DLT2018), v. 11088, eds. M. Hoshi, S. Seki, Springer, Cham, 2018, 145–155 | DOI | MR | Zbl
[7] Casas D., Volkov M.V., “Binary completely reachable automata”, Lecture Notes in Comput. Sci.: LATIN 2022: Theoretical Informatics, v. 13568, eds. Castañeda A., Rodríguez-Henríquez F., Springer, Cham, 2022, 345–358 | DOI | MR | Zbl
[8] Don H., “The Černý conjecture and 1-contracting automata”, Electron. J. Combin., 23:3 (2016), 3.12 | DOI | MR
[9] Ferens R., Szykulła M., “Completely reachable automata: a polynomial algorithm and quadratic upper bounds”, LIPIcs: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), v. 261, eds. K. Etessami, U. Feige, G. Puppis, Dagstuhl Publishing, Dagstuhl, Germany, 2023, 59:1–59:17 | DOI | MR
[10] Hoffmann S., “New characterizations of primitive permutation groups with applications to synchronizing automata”, Inform. and Comput., 295(A) (2023), 105086 | DOI | MR | Zbl
[11] Maslennikova M.I., Reset Complexity of Ideal Languages, 2014, 12 pp., arXiv: [cs.FL] 1404.2816v1
[12] Rystsov I., “Estimation of the length of reset words for automata with simple idempotents”, Cybernet. Systems Anal., 36:3 (2000), 339–344 | DOI | MR | Zbl
[13] Rystsov I., Szykuła M., Primitive Automata that are Synchronizing, 2023, 13 pp., arXiv: [cs.FL] 2307.01302