Reducing graphs by lifting rotations of edges to splittable graphs
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 25-36
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph $G$ is splittable if its set of vertices can be represented as the union of a clique and a coclique. We will call a graph $H$ a splittable ancestor of a graph $G$ if the graph $G$ is reducible to the graph $H$ using some sequential lifting rotations of edges and $H$ is a splittable graph. A splittable $r$-ancestor of $G$ we will call its splittable ancestor whose Durfey rank is $r$. Let us set $s = ({1}/{2}) (\mathrm{sum}\,\mathrm{tl}(\lambda) - \mathrm{sum}\,\mathrm{hd}(\lambda))$, where $\mathrm{hd}(\lambda)$ and $\mathrm{tl}(\lambda)$ are the head and the tail of a partition $\lambda$. The main goal of this work is to prove that any graph $G$ of Durfey rank $r$ is reducible by $s$ successive lifting rotations of edges to a splittable $r$-ancestor $H$ and $s$ is the smallest non-negative integer with this property. Note that the degree partition $\mathrm{dpt}(G)$ of the graph $G$ can be obtained from the degree partition $\mathrm{dpt}(H)$ of the splittable $r$-ancestor $H$ using a sequence of $s$ elementary transformations of the first type. The obtained results provide new opportunities for investigating the set of all realizations of a given graphical partition using splittable graphs.
Keywords:
Graphical partition, Degree partition, Splittable graph, Rotation of an edge
Mots-clés : Integer partition
Mots-clés : Integer partition
@article{UMJ_2024_10_2_a2,
author = {Vitaly A. Baransky and Valentin V. Zuev and Tatiana A. Senchonok},
title = {Reducing graphs by lifting rotations of edges to splittable graphs},
journal = {Ural mathematical journal},
pages = {25--36},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a2/}
}
TY - JOUR AU - Vitaly A. Baransky AU - Valentin V. Zuev AU - Tatiana A. Senchonok TI - Reducing graphs by lifting rotations of edges to splittable graphs JO - Ural mathematical journal PY - 2024 SP - 25 EP - 36 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a2/ LA - en ID - UMJ_2024_10_2_a2 ER -
%0 Journal Article %A Vitaly A. Baransky %A Valentin V. Zuev %A Tatiana A. Senchonok %T Reducing graphs by lifting rotations of edges to splittable graphs %J Ural mathematical journal %D 2024 %P 25-36 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a2/ %G en %F UMJ_2024_10_2_a2
Vitaly A. Baransky; Valentin V. Zuev; Tatiana A. Senchonok. Reducing graphs by lifting rotations of edges to splittable graphs. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 25-36. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a2/