Mots-clés : Dubins car
@article{UMJ_2024_10_2_a13,
author = {Artem A. Zimovets},
title = {Properties of solutions in the {Dubins} car control problem},
journal = {Ural mathematical journal},
pages = {157--173},
year = {2024},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/}
}
Artem A. Zimovets. Properties of solutions in the Dubins car control problem. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 157-173. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/
[1] Ayala J., Rubinstein H., “The classification of homotopy classes of bounded curvature paths”, Isr. J. Math., 213 (2016), 79–107 | DOI | MR | Zbl
[2] Balkcom D., Furtuna A., Wang W., “The Dubins car and other arm-like mobile robots”, Proc. 2018 IEEE Int. Conf. on Robot. and Aut. (ICRA), Brisbane, QLD, Australia, 2018, 380–386 | DOI
[3] Berdyshev Iu. I., “Time-optimal control synthesis for a fourth-order nonlinear system”, J. Appl. Math. Mech., 39:6 (1975), 948–956 | DOI | MR | Zbl
[4] Boissonnat J.-D., Cerezo A., Leblond J., “A note on shortest paths in the plane subject to a constraint on the derivative of the curvature”, INRIA Research Report, 1994, RR-2160 inria-00074512
[5] Boissonnat J.-D., Cérézo A., Leblond J., “Shortest paths of bounded curvature in the plane”, J. Intell. Robot. Syst., 11 (1994), 5–20 | DOI | Zbl
[6] Buzikov M. E., Galyaev A. A., “Minimum-time lateral interception of a moving target by a Dubins car”, Automatica, 135 (2022), 109968 | DOI | MR | Zbl
[7] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[8] Johnson H. H., “An application of the maximum principle to the geometry of plane curves”, Proc. Amer. Math. Soc., 44:2 (1974), 432–435 | DOI | MR | Zbl
[9] Kaya C. Y., “Markov–Dubins path via optimal control theory”, Comput. Optim. Appl., 68 (2017), 719–747 | DOI | MR | Zbl
[10] Khabarov S. P., Shilkina M. L., “Geometric approach to the solution of the Dubins car problem in the formation of program trajectories”, Nauch.-Tehn. Vest. Inf. Tekh., Mekh. i Opt., 21:5 (2021), 653–663 (in Russian) | DOI
[11] Markov A. A., “A few examples of solving special problems on the largest and smallest values”, Soobshch. Kharkov. Mat. Obshch. Ser. 2, 1:2 (1889), 250–276 (in Russian)
[12] McGee T. G., Hedrick J. K., “Optimal path planning with a kinematic airplane model”, J. Guid. Cont. Dyn., 30:2 (2007), 629–633 | DOI
[13] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, J. Comp. Syst. Sci. Int., 42:3 (2003), 320–328 | MR | Zbl
[14] Patsko V. S., Fedotov A. A., “Three-dimensional reachable set for the Dubins car: Foundation of analytical description”, Commun. Optim. Theory, 2022 (2022), 1–42 | DOI | MR
[15] Pecsvaradi T., “Optimal horizontal guidance law for aircraft in the terminal area”, IEEE Trans. Automatic Control, 17:6 (1972), 763–772 | DOI | MR
[16] Reeds J. A., Shepp L. A., “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR | Zbl
[17] Shkel A. M., Lumelsky V. J., “Classification of the Dubins set”, Robotics Auton. Syst., 34:4 (2001), 179–202 | DOI | Zbl
[18] Sussmann H. J., “Shortest 3-dimensional paths with a prescribed curvature bound”, Proc. of 1995 34th IEEE Conf. on Decision and Control, v. 4, 1995, 3306–3312 | DOI
[19] Sussmann H. J., Tang G., “Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control”, Rutgers Center for Syst. and Cont., Technical Report 91–10, 1991 SYCON-91-10