Properties of solutions in the Dubins car control problem
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 157-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper addresses the time-optimal control problem of the Dubins car, which is closely related to the problem of constructing the shortest curve with bounded curvature between two points in a plane. This connection allows researchers to apply both geometric methods and control theory techniques during their investigations. It is established that the time-optimal control for the Dubins car is a piecewise constant function with no more than two switchings. This characteristic enables the categorization of all such controls into several types, facilitating the examination of the solutions to the control problem for each type individually. The paper derives explicit formulas for determining the switching times of the control signal. In each case, necessary and sufficient conditions for the existence of solutions are obtained. For certain control types, the uniqueness of optimal solutions is established. Additionally, the dependence of the movement time on the initial and terminal conditions is studied.
Keywords: Dubins problem, Time-optimal control, Curve with bounded curvature
Mots-clés : Dubins car
@article{UMJ_2024_10_2_a13,
     author = {Artem A. Zimovets},
     title = {Properties of solutions in the {Dubins} car control problem},
     journal = {Ural mathematical journal},
     pages = {157--173},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/}
}
TY  - JOUR
AU  - Artem A. Zimovets
TI  - Properties of solutions in the Dubins car control problem
JO  - Ural mathematical journal
PY  - 2024
SP  - 157
EP  - 173
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/
LA  - en
ID  - UMJ_2024_10_2_a13
ER  - 
%0 Journal Article
%A Artem A. Zimovets
%T Properties of solutions in the Dubins car control problem
%J Ural mathematical journal
%D 2024
%P 157-173
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/
%G en
%F UMJ_2024_10_2_a13
Artem A. Zimovets. Properties of solutions in the Dubins car control problem. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 157-173. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a13/

[1] Ayala J., Rubinstein H., “The classification of homotopy classes of bounded curvature paths”, Isr. J. Math., 213 (2016), 79–107 | DOI | MR | Zbl

[2] Balkcom D., Furtuna A., Wang W., “The Dubins car and other arm-like mobile robots”, Proc. 2018 IEEE Int. Conf. on Robot. and Aut. (ICRA), Brisbane, QLD, Australia, 2018, 380–386 | DOI

[3] Berdyshev Iu. I., “Time-optimal control synthesis for a fourth-order nonlinear system”, J. Appl. Math. Mech., 39:6 (1975), 948–956 | DOI | MR | Zbl

[4] Boissonnat J.-D., Cerezo A., Leblond J., “A note on shortest paths in the plane subject to a constraint on the derivative of the curvature”, INRIA Research Report, 1994, RR-2160 inria-00074512

[5] Boissonnat J.-D., Cérézo A., Leblond J., “Shortest paths of bounded curvature in the plane”, J. Intell. Robot. Syst., 11 (1994), 5–20 | DOI | Zbl

[6] Buzikov M. E., Galyaev A. A., “Minimum-time lateral interception of a moving target by a Dubins car”, Automatica, 135 (2022), 109968 | DOI | MR | Zbl

[7] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[8] Johnson H. H., “An application of the maximum principle to the geometry of plane curves”, Proc. Amer. Math. Soc., 44:2 (1974), 432–435 | DOI | MR | Zbl

[9] Kaya C. Y., “Markov–Dubins path via optimal control theory”, Comput. Optim. Appl., 68 (2017), 719–747 | DOI | MR | Zbl

[10] Khabarov S. P., Shilkina M. L., “Geometric approach to the solution of the Dubins car problem in the formation of program trajectories”, Nauch.-Tehn. Vest. Inf. Tekh., Mekh. i Opt., 21:5 (2021), 653–663 (in Russian) | DOI

[11] Markov A. A., “A few examples of solving special problems on the largest and smallest values”, Soobshch. Kharkov. Mat. Obshch. Ser. 2, 1:2 (1889), 250–276 (in Russian)

[12] McGee T. G., Hedrick J. K., “Optimal path planning with a kinematic airplane model”, J. Guid. Cont. Dyn., 30:2 (2007), 629–633 | DOI

[13] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, J. Comp. Syst. Sci. Int., 42:3 (2003), 320–328 | MR | Zbl

[14] Patsko V. S., Fedotov A. A., “Three-dimensional reachable set for the Dubins car: Foundation of analytical description”, Commun. Optim. Theory, 2022 (2022), 1–42 | DOI | MR

[15] Pecsvaradi T., “Optimal horizontal guidance law for aircraft in the terminal area”, IEEE Trans. Automatic Control, 17:6 (1972), 763–772 | DOI | MR

[16] Reeds J. A., Shepp L. A., “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR | Zbl

[17] Shkel A. M., Lumelsky V. J., “Classification of the Dubins set”, Robotics Auton. Syst., 34:4 (2001), 179–202 | DOI | Zbl

[18] Sussmann H. J., “Shortest 3-dimensional paths with a prescribed curvature bound”, Proc. of 1995 34th IEEE Conf. on Decision and Control, v. 4, 1995, 3306–3312 | DOI

[19] Sussmann H. J., Tang G., “Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control”, Rutgers Center for Syst. and Cont., Technical Report 91–10, 1991 SYCON-91-10