On the modular sequence spaces generated by the Ces\`aro mean
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 144-156
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the seminormed Cesàro difference sequence space $ \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C}) $ is defined by using the generalized Orlicz function. Some algebraic and topological properties of the space $ \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C}) $ are investigated. Various inclusion relations for this sequence space are also studied.
Keywords:
Difference sequences, Orlicz function, Modular sequence, $AK$-space and $BK$-space
@article{UMJ_2024_10_2_a12,
author = {Sukhde Singh and Toseef Ahmed Malik},
title = {On the modular sequence spaces generated by the {Ces\`aro} mean},
journal = {Ural mathematical journal},
pages = {144--156},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/}
}
Sukhde Singh; Toseef Ahmed Malik. On the modular sequence spaces generated by the Ces\`aro mean. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 144-156. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/