On the modular sequence spaces generated by the Ces\`aro mean
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 144-156

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the seminormed Cesàro difference sequence space $ \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C}) $ is defined by using the generalized Orlicz function. Some algebraic and topological properties of the space $ \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C}) $ are investigated. Various inclusion relations for this sequence space are also studied.
Keywords: Difference sequences, Orlicz function, Modular sequence, $AK$-space and $BK$-space
@article{UMJ_2024_10_2_a12,
     author = {Sukhde Singh and Toseef Ahmed Malik},
     title = {On the modular sequence spaces generated by the {Ces\`aro} mean},
     journal = {Ural mathematical journal},
     pages = {144--156},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/}
}
TY  - JOUR
AU  - Sukhde Singh
AU  - Toseef Ahmed Malik
TI  - On the modular sequence spaces generated by the Ces\`aro mean
JO  - Ural mathematical journal
PY  - 2024
SP  - 144
EP  - 156
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/
LA  - en
ID  - UMJ_2024_10_2_a12
ER  - 
%0 Journal Article
%A Sukhde Singh
%A Toseef Ahmed Malik
%T On the modular sequence spaces generated by the Ces\`aro mean
%J Ural mathematical journal
%D 2024
%P 144-156
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/
%G en
%F UMJ_2024_10_2_a12
Sukhde Singh; Toseef Ahmed Malik. On the modular sequence spaces generated by the Ces\`aro mean. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 144-156. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a12/