Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 131-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If $w(\zeta)$ is a polynomial of degree $n$ with all its zeros in $|\zeta|\leq \Delta,$ $\Delta\geq 1$ and any real $\gamma\geq 1$, Aziz proved the integral inequality [1] \begin{equation*} \left\lbrace\int_{0}^{2\pi}\left|1+\Delta^ne^{i\theta}\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}\max_{|\zeta|=1}|w^{\prime}(\zeta)|\geq n\left\lbrace\int_{0}^{2\pi}\left|w\left(e^{i\theta}\right)\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}. \end{equation*} In this article, we establish a refined extension of the above integral inequality by using the polar derivative instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial. Besides, our result also yields other intriguing inequalities as special cases.
Keywords: Polar derivative, Turán-type inequalities, Integral inequalities
@article{UMJ_2024_10_2_a11,
     author = {Mayanglambam Singhajit Singh and Barchand Chanam},
     title = {Integral analogue of {Tur\'an-type} inequalities concerning the polar derivative of a polynomial},
     journal = {Ural mathematical journal},
     pages = {131--143},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/}
}
TY  - JOUR
AU  - Mayanglambam Singhajit Singh
AU  - Barchand Chanam
TI  - Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial
JO  - Ural mathematical journal
PY  - 2024
SP  - 131
EP  - 143
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/
LA  - en
ID  - UMJ_2024_10_2_a11
ER  - 
%0 Journal Article
%A Mayanglambam Singhajit Singh
%A Barchand Chanam
%T Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial
%J Ural mathematical journal
%D 2024
%P 131-143
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/
%G en
%F UMJ_2024_10_2_a11
Mayanglambam Singhajit Singh; Barchand Chanam. Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/

[1] Aziz A., “Integral mean estimates for polynomials with restricted zeros”, J. Approx. Theory, 55:2 (1988), 232–239 | DOI | MR | Zbl

[2] Aziz A., Dawood Q. M., “Inequalities for a polynomial and its derivatives”, J. Approx. Theory, 54:3 (1988), 306–313 | DOI | MR | Zbl

[3] Aziz A., Rather N. A., “A refinement of a theorem of {P}aul {T}urán concerning polynomials”, Math. Inequal. Appl., 1:2 (1998), 231–238 | DOI | MR | Zbl

[4] Aziz A., Shah W. M., “Inequalities for a polynomial and its derivative”, Math. Inequal. Appl., 7:3 (2004), 379–391 | DOI | MR | Zbl

[5] Bernstein S., Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réele, Gauthier-Villars, Paris, 1926, 207 pp. (in French)

[6] Boas Jr R. P., Rahman Q. I., “${L}^p$ inequalities for polynomials and entire functions”, Arch. Rational Mech. Anal., 11 (1962), 34–39 | DOI | MR | Zbl

[7] Dewan K. K., Singh N., Mir A., Bhat A., “Some inequalities for the polar derivative of a polynomial”, Southeast Asian Bull. Math., 34 (2010), 69–77 | MR | Zbl

[8] Gardner R. B., Govil N. K., Musukula S. R., “Rate of growth of polynomials not vanishing inside a circle”, J. Inequal. Pure Appl. Math., 6:2 (2005), 53 | MR | Zbl

[9] Govil N. K., “On the derivative of a polynomials”, Proc. Amer. Math. Soc., 41:2 (1973), 543–546 | DOI | MR | Zbl

[10] Govil N. K., “Some inequalities for the derivative of a polynomials”, J. Approx. Theory, 66:1 (1991), 29–35 | DOI | MR | Zbl

[11] Hardy G. H., “The mean value of the modulus of an analytic function”, Proc. Lond. Math. Soc., s2_14:1 (1915), 269–277 | DOI | MR

[12] Malik M. A., “An integral mean estimates for polynomials”, Proc. Amer. Math. Soc., 91:2 (1984), 281–284 | DOI | MR | Zbl

[13] Malik M. A., “On the derivative of a polynomial”, J. Lond. Math. Soc., s2-1:1 (1969), 57–60 | DOI | MR | Zbl

[14] Mendeleev D., Issledovanie vodnykh rastvorov po udel'nomu vesu [Investigations of Aqueous Solutions Based on Specific Gravity], Tip. V. Demakova, St. Petersburg, 1887, 521 pp. (in Russain)

[15] Milovanovic G. V., Mir A., Malik A., “Estimates for the polar derivative of a constrained polynomial on a disk”, Cubo, 24:3 (2022), 541–554 | DOI | MR | Zbl

[16] Rahman Q. I., Schmeisser G., “${L}^p$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1988), 26–32 | DOI | MR | Zbl

[17] Rather N. A., Bhat F. A., “Inequalities for the polar derivative of a polynomial”, Appl. Math. E-Notes, 17 (2017), 231–241 | MR | Zbl

[18] Rudin W., Real and Complex Analysis, McGraw-Hill Publ. Comp., 1977, 416 pp. | MR

[19] Singh T. B., Chanam B., “Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of polynomial”, J. Math. Inequal., 15:4 (2021), 1663–1675 | DOI | MR | Zbl

[20] Taylor A. E., Introduction to Functional Analysis, John Wiley Sons Inc., New York, 1958 | MR | Zbl

[21] Turan P., “Über die ableitung von polynomen”, Compos. Math., 7 (1939), 89–95 (in German) | MR | Zbl