@article{UMJ_2024_10_2_a11,
author = {Mayanglambam Singhajit Singh and Barchand Chanam},
title = {Integral analogue of {Tur\'an-type} inequalities concerning the polar derivative of a polynomial},
journal = {Ural mathematical journal},
pages = {131--143},
year = {2024},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/}
}
TY - JOUR AU - Mayanglambam Singhajit Singh AU - Barchand Chanam TI - Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial JO - Ural mathematical journal PY - 2024 SP - 131 EP - 143 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/ LA - en ID - UMJ_2024_10_2_a11 ER -
%0 Journal Article %A Mayanglambam Singhajit Singh %A Barchand Chanam %T Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial %J Ural mathematical journal %D 2024 %P 131-143 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/ %G en %F UMJ_2024_10_2_a11
Mayanglambam Singhajit Singh; Barchand Chanam. Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a11/
[1] Aziz A., “Integral mean estimates for polynomials with restricted zeros”, J. Approx. Theory, 55:2 (1988), 232–239 | DOI | MR | Zbl
[2] Aziz A., Dawood Q. M., “Inequalities for a polynomial and its derivatives”, J. Approx. Theory, 54:3 (1988), 306–313 | DOI | MR | Zbl
[3] Aziz A., Rather N. A., “A refinement of a theorem of {P}aul {T}urán concerning polynomials”, Math. Inequal. Appl., 1:2 (1998), 231–238 | DOI | MR | Zbl
[4] Aziz A., Shah W. M., “Inequalities for a polynomial and its derivative”, Math. Inequal. Appl., 7:3 (2004), 379–391 | DOI | MR | Zbl
[5] Bernstein S., Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réele, Gauthier-Villars, Paris, 1926, 207 pp. (in French)
[6] Boas Jr R. P., Rahman Q. I., “${L}^p$ inequalities for polynomials and entire functions”, Arch. Rational Mech. Anal., 11 (1962), 34–39 | DOI | MR | Zbl
[7] Dewan K. K., Singh N., Mir A., Bhat A., “Some inequalities for the polar derivative of a polynomial”, Southeast Asian Bull. Math., 34 (2010), 69–77 | MR | Zbl
[8] Gardner R. B., Govil N. K., Musukula S. R., “Rate of growth of polynomials not vanishing inside a circle”, J. Inequal. Pure Appl. Math., 6:2 (2005), 53 | MR | Zbl
[9] Govil N. K., “On the derivative of a polynomials”, Proc. Amer. Math. Soc., 41:2 (1973), 543–546 | DOI | MR | Zbl
[10] Govil N. K., “Some inequalities for the derivative of a polynomials”, J. Approx. Theory, 66:1 (1991), 29–35 | DOI | MR | Zbl
[11] Hardy G. H., “The mean value of the modulus of an analytic function”, Proc. Lond. Math. Soc., s2_14:1 (1915), 269–277 | DOI | MR
[12] Malik M. A., “An integral mean estimates for polynomials”, Proc. Amer. Math. Soc., 91:2 (1984), 281–284 | DOI | MR | Zbl
[13] Malik M. A., “On the derivative of a polynomial”, J. Lond. Math. Soc., s2-1:1 (1969), 57–60 | DOI | MR | Zbl
[14] Mendeleev D., Issledovanie vodnykh rastvorov po udel'nomu vesu [Investigations of Aqueous Solutions Based on Specific Gravity], Tip. V. Demakova, St. Petersburg, 1887, 521 pp. (in Russain)
[15] Milovanovic G. V., Mir A., Malik A., “Estimates for the polar derivative of a constrained polynomial on a disk”, Cubo, 24:3 (2022), 541–554 | DOI | MR | Zbl
[16] Rahman Q. I., Schmeisser G., “${L}^p$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1988), 26–32 | DOI | MR | Zbl
[17] Rather N. A., Bhat F. A., “Inequalities for the polar derivative of a polynomial”, Appl. Math. E-Notes, 17 (2017), 231–241 | MR | Zbl
[18] Rudin W., Real and Complex Analysis, McGraw-Hill Publ. Comp., 1977, 416 pp. | MR
[19] Singh T. B., Chanam B., “Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of polynomial”, J. Math. Inequal., 15:4 (2021), 1663–1675 | DOI | MR | Zbl
[20] Taylor A. E., Introduction to Functional Analysis, John Wiley Sons Inc., New York, 1958 | MR | Zbl
[21] Turan P., “Über die ableitung von polynomen”, Compos. Math., 7 (1939), 89–95 (in German) | MR | Zbl