On widths of some classes of analytic functions in a circle
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate exact values of some $n$-widths of the class $W_{q}^{(r)}(\Phi),$ $r\in\mathbb{Z}_{+},$ in the Banach spaces $\mathscr{L}_{q,\gamma}$ and $B_{q,\gamma},$ $1\leq q\leq\infty,$ with a weight $\gamma$. These classes consist of functions $f$ analytic in the unit circle, their $r$th order derivatives $f^{(r)}$ belong to the Hardy space $H_{q},$ $1\leq q\leq\infty,$ and the averaged moduli of smoothness of boundary values of $f^{(r)}$ are bounded by a given majorant $\Phi$ at the system of points $\{\pi/(2k)\}_{k\in\mathbb{N}}$; more precisely, $$ \frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq \Phi\left(\frac{\pi}{2k}\right) $$ for all $k\in\mathbb{N}$, $k>r.$
Keywords: Modulus of smoothness, The best approximation, $n$-widths, The best linear method of approximation
@article{UMJ_2024_10_2_a10,
     author = {Mirgand Sh. Shabozov and Muqim S. Saidusajnov},
     title = {On widths of some classes of analytic functions in a circle},
     journal = {Ural mathematical journal},
     pages = {121--130},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/}
}
TY  - JOUR
AU  - Mirgand Sh. Shabozov
AU  - Muqim S. Saidusajnov
TI  - On widths of some classes of analytic functions in a circle
JO  - Ural mathematical journal
PY  - 2024
SP  - 121
EP  - 130
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/
LA  - en
ID  - UMJ_2024_10_2_a10
ER  - 
%0 Journal Article
%A Mirgand Sh. Shabozov
%A Muqim S. Saidusajnov
%T On widths of some classes of analytic functions in a circle
%J Ural mathematical journal
%D 2024
%P 121-130
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/
%G en
%F UMJ_2024_10_2_a10
Mirgand Sh. Shabozov; Muqim S. Saidusajnov. On widths of some classes of analytic functions in a circle. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/

[1] Ainulloev N., Taikov L. V., “Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc”, Math. Notes, 40:3 (1986), 699–705 | DOI | MR | Zbl

[2] Babenko K. I., “Best approximations for a class of analytic functions”, Izv. Akad. Nauk SSSR. Ser. Mat., 22:5 (1958), 631–640 (in Russian) | MR | Zbl

[3] Dveǐrin M. Z., “Widths and $\varepsilon$-entropy of classes of analytic functions in the unit disc”, Teor. Funkts., Funkts. Anal. Prilozh., 23 (1975), 32–46 (in Russian) | MR | Zbl

[4] Dvejrin M. Z., Chebanenko I. V., “On the polynomial approximation in Banach spaces of analytic functions”, Theory of mappings and approximation of functions, Collect. Sci. Works, Naukova Dumka, Kiev, 1983, 62–73 (in Russian) | MR

[5] Farkov Yu. A., “Widths of Hardy classes and Bergman classes on the ball in $\mathbb{C}^{n}$”, Russian Math. Surveys, 45:5 (1990), 229–231 | DOI | MR | Zbl

[6] Farkov Yu. A., “$n$-Widths, Faber expansion, and computation of analytic functions”, J. Complexity, 12:1 (1996), 58–79 | DOI | MR | Zbl

[7] Fisher S. D., Stessin M. I., “The $n$-width of the unit ball of $H^{q}$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl

[8] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Heidelberg, 1985, 252 pp. | DOI | MR | Zbl

[9] Saidusainov M. S., “On the best linear method of approximation of some classes analytic functions in the weighted Bergman space”, Chebyshevskii Sb., 17:1 (2016), 240–253 (in Russian) | MR | Zbl

[10] Saidusainov M. S., “$\mathscr{K}$-functionals and exact values of $n$-widths in the Bergman space”, Ural Math. J., 3:2 (2017), 74–81 | DOI | MR

[11] Saidusainov M. S., “Analysis of a theorem on the Jackson–Stechkin inequality in the Bergman space $B_{2}$”, Trudy Inst. Mat. Mekh. UrO RAN, 24:4 (2018), 217–224 (in Russian) | DOI | MR

[12] Saidusainov M. S., “Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space”, Ural Math. J., 9:2 (2023), 165–174 | DOI | MR

[13] Shabozov M. Sh., “Widths of some classes of analytic functions in the Bergman space”, Dokl. Math., 65:2 (2002), 194–197 | MR

[14] Shabozov M. Sh., “On the best simultaneous approximation of functions in the Hardy space”, Trudy Inst. Mat. Mekh. UrO RAN, 29:4 (2023), 283–291 (in Russian) | DOI | MR

[15] Shabozov M. Sh., “On the best simultaneous approximation in the Bergman space $B_{2}$”, Math. Notes, 114 (2023), 377–386 | DOI | MR | Zbl

[16] Shabozov M. Sh., Saidusaynov M. S., “Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space”, Vladikavkazskii Mat. Zh., 20:1 (2018), 86–97 (in Russian) | DOI | MR | Zbl

[17] Shabozov M. Sh., Saidusaynov M. S., “Upper bounds for the approximation of certain classes of functions of a complex variable by Fourier series in the space $L_2$ and $n$-widths”, Math. Notes, 103 (2018), 656–668 | DOI | MR | Zbl

[18] Shabozov M. Sh., Saidusainov M. S., “Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:2 (2019), 258–272 (in Russian) | DOI | MR

[19] Shabozov M. Sh., Saidusaynov M. S., “Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$”, Russ. Math., 64 (2020), 56–62 | DOI | MR | Zbl

[20] Shabozov M. Sh., Saidusainov M. S., “Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$”, Chebyshevskii Sb., 23:1 (2022), 167–182 (in Russian) | DOI | MR | Zbl

[21] Shabozov M. Sh., Shabozov O. Sh., “Widths of some classes of analytic functions in the Hardy space $H_2$”, Math. Notes, 68:5–6 (2000), 675–679 | DOI | MR | Zbl

[22] Shabozov M. Sh., Shabozov O. Sh., “On the best approximation of some classes of analytic functions in weighted Bergman spaces”, Dokl. Math., 75:1 (2007), 97–100 | DOI | MR | Zbl

[23] Shabozov M. Sh., Yusupov G. Y., “Best approximation and width of some classes of analytic functions”, Dokl. Math., 65:1 (2002), 111–113 | MR | Zbl

[24] Shabozov M. Sh., Yusupov G. A., “On the best polynomial approximation of functions in the Hardy space $H_{q,R} \, (1\leq q\leq\infty, R\geq 1)$”, Chebyshevskii Sb., 24:1 (2023), 182–193 (in Russian) | DOI | MR | Zbl

[25] Shikhalev N. I., “An inequality of Bernstein-Markov kind for analytic functions”, Dokl. Akad. Nauk Azerb. SSR, 31:8 (1975), 9–14 (in Russian) | MR

[26] Smirnov V. I., Lebedev N. A., A Constructive Theory of Functions of a Complex Variable, Nauka, Moscow-Leningrad, 1964., 440 pp. | MR | Zbl

[27] Taikov L. V., “On the best approximation in the mean of certain classes of analytic functions”, Math. Notes, 1 (1967), 104–109 | DOI | MR | Zbl

[28] Taikov L. V., “Diameters of certain classes of analytic functions”, Math. Notes, 22 (1977), 650–656 | DOI | MR

[29] Tikhomirov V. M., “Diameters of sets in function spaces and the theory of best approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl

[30] Tikhomirov V. M., “Approximation Theory”, Analysis II. Convex Analysis and Approximation Theory, Encyclopaedia Math. Sci., no. 14, ed. Gamkrelidze R.V., Springer, Berlin, Heidelberg, 1990, 93–243 | DOI | MR

[31] Vakarchuk S. B., “Widths of certain classes of analytic functions in the Hardy space $H_2$”, Ukr. Math. J., 41:6 (1989), 686–689 | DOI | MR | Zbl

[32] Vakarchyuk S. B., “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Math. Notes, 57 (1995), 21–27 | DOI | MR | Zbl

[33] Vakarchuk S. B., “Exact values of widths for certain functional classes”, Ukr. Math. J., 48 (1996), 151–153 | DOI | MR | Zbl

[34] Vakarchyuk S. B., “Exact values of widths of classes of analytic functions on the disk and best linear approximation methods”, Math. Notes, 72 (2002), 615–619 | DOI | MR

[35] Vakarchuk S. B., “On some extremal problems of approximation theory in the complex plane”, Ukr. Math. J., 56. (2004), 1371–1390 | DOI | MR | Zbl

[36] Vakarchuk S. B., Zabutnaya V. I., “Best linear approximation methods for functions of Taikov classes in the Hardy spaces $H_{q,\rho}$, ${q\geq 1,}$ ${0\rho\leq 1}$”, Math. Notes, 85 (2009), 322–327 | DOI | MR | Zbl