On widths of some classes of analytic functions in a circle
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate exact values of some $n$-widths of the class $W_{q}^{(r)}(\Phi),$ $r\in\mathbb{Z}_{+},$ in the Banach spaces $\mathscr{L}_{q,\gamma}$ and $B_{q,\gamma},$ $1\leq q\leq\infty,$ with a weight $\gamma$. These classes consist of
functions $f$ analytic in the unit circle, their $r$th order derivatives $f^{(r)}$ belong to the Hardy space $H_{q},$ $1\leq
q\leq\infty,$ and the averaged moduli of smoothness of boundary values of $f^{(r)}$ are bounded by a given majorant $\Phi$ at the system of points $\{\pi/(2k)\}_{k\in\mathbb{N}}$; more precisely,
$$
\frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq
\Phi\left(\frac{\pi}{2k}\right)
$$
for all $k\in\mathbb{N}$, $k>r.$
Keywords:
Modulus of smoothness, The best approximation, $n$-widths, The best linear method of approximation
@article{UMJ_2024_10_2_a10,
author = {Mirgand Sh. Shabozov and Muqim S. Saidusajnov},
title = {On widths of some classes of analytic functions in a circle},
journal = {Ural mathematical journal},
pages = {121--130},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/}
}
TY - JOUR AU - Mirgand Sh. Shabozov AU - Muqim S. Saidusajnov TI - On widths of some classes of analytic functions in a circle JO - Ural mathematical journal PY - 2024 SP - 121 EP - 130 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/ LA - en ID - UMJ_2024_10_2_a10 ER -
Mirgand Sh. Shabozov; Muqim S. Saidusajnov. On widths of some classes of analytic functions in a circle. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/