On widths of some classes of analytic functions in a circle
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate exact values of some $n$-widths of the class $W_{q}^{(r)}(\Phi),$ $r\in\mathbb{Z}_{+},$ in the Banach spaces $\mathscr{L}_{q,\gamma}$ and $B_{q,\gamma},$ $1\leq q\leq\infty,$ with a weight $\gamma$. These classes consist of functions $f$ analytic in the unit circle, their $r$th order derivatives $f^{(r)}$ belong to the Hardy space $H_{q},$ $1\leq q\leq\infty,$ and the averaged moduli of smoothness of boundary values of $f^{(r)}$ are bounded by a given majorant $\Phi$ at the system of points $\{\pi/(2k)\}_{k\in\mathbb{N}}$; more precisely, $$ \frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq \Phi\left(\frac{\pi}{2k}\right) $$ for all $k\in\mathbb{N}$, $k>r.$
Keywords: Modulus of smoothness, The best approximation, $n$-widths, The best linear method of approximation
@article{UMJ_2024_10_2_a10,
     author = {Mirgand Sh. Shabozov and Muqim S. Saidusajnov},
     title = {On widths of some classes of analytic functions in a circle},
     journal = {Ural mathematical journal},
     pages = {121--130},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/}
}
TY  - JOUR
AU  - Mirgand Sh. Shabozov
AU  - Muqim S. Saidusajnov
TI  - On widths of some classes of analytic functions in a circle
JO  - Ural mathematical journal
PY  - 2024
SP  - 121
EP  - 130
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/
LA  - en
ID  - UMJ_2024_10_2_a10
ER  - 
%0 Journal Article
%A Mirgand Sh. Shabozov
%A Muqim S. Saidusajnov
%T On widths of some classes of analytic functions in a circle
%J Ural mathematical journal
%D 2024
%P 121-130
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/
%G en
%F UMJ_2024_10_2_a10
Mirgand Sh. Shabozov; Muqim S. Saidusajnov. On widths of some classes of analytic functions in a circle. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 121-130. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a10/