Reachable set of some discrete system with uncertain Liu disturbances
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 15-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of finding the reachable set for a linear system with determinate and stochastic Liu's uncertainties. As Liu's uncertainties, we use uniformly distributed ordinary uncertain values defined in some uncertain space and independent of one another. This fact means that the state vector of the system becomes infinite-dimensional. As determinate uncertainties, we consider feedback controls and unknown initial states. Besides, there is a constraint in the form of a sum of uncertain expectations. The initial estimation problem reduces to a determinate multi-step problem for matrices with a fixed constraint at the right end of the trajectory. This reduction requires some information on Liu's theory. We give necessary and sufficient conditions for the finiteness of a target functional in the obtained determinate problem. We provide a numerical example of a two-dimensional two-step system.
Keywords: Uncertainty theory, Uncertain values, Feedback controls, Attainable set
Mots-clés : Lagrange multipliers
@article{UMJ_2024_10_2_a1,
     author = {Boris I. Ananyev},
     title = {Reachable set of some discrete system with uncertain {Liu} disturbances},
     journal = {Ural mathematical journal},
     pages = {15--24},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a1/}
}
TY  - JOUR
AU  - Boris I. Ananyev
TI  - Reachable set of some discrete system with uncertain Liu disturbances
JO  - Ural mathematical journal
PY  - 2024
SP  - 15
EP  - 24
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a1/
LA  - en
ID  - UMJ_2024_10_2_a1
ER  - 
%0 Journal Article
%A Boris I. Ananyev
%T Reachable set of some discrete system with uncertain Liu disturbances
%J Ural mathematical journal
%D 2024
%P 15-24
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a1/
%G en
%F UMJ_2024_10_2_a1
Boris I. Ananyev. Reachable set of some discrete system with uncertain Liu disturbances. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a1/

[1] Ananyev B. I., “A state estimation of Liu equations”, AIP Conf. Proc., 1690 (2015), 040005 | DOI

[2] Ananyev B. I., “State estimation of some class of discrete Liu's processes”, Proc. XIV All-Russian Conference on Control Problems (VSPU-2024), Moscow, June 17–20, 2024, IPU RAS, Moscow, 2024, 604–608 (in Russian) https://vspu2024.ipu.ru/prcdngs

[3] Ananyev B. I., “On some complements to Liu's theory”, Proc. Steklov Inst. Math., 325:Suppl. 1 (2024), S1–S16 | DOI | MR | Zbl

[4] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainikh processov [The Theory of Random Processes], Fizmatlit, Moscow, 2003, 400 pp. (in Russian)

[5] Chernousko F. L., “An estimate for the reachable sets of linear systems with an indefinite matrix”, Dokl. Akad. Nauk, 349:1 (1996), 32–34 (in Russian) | MR | Zbl

[6] Hou Y., Yang Sh., “Uncertain programming with recourse”, J. Chem. Pharmaceutical Res., 7:3 (2015), 2366–2372

[7] Kurzhanski A., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, Birkhäuser, Boston, 2014, 445 pp. | DOI | MR | Zbl

[8] Liu B., “Toward uncertain finance theory”, J. Uncertain. Anal. Appl., 1 (2013), 1, 1–15 | DOI

[9] Liu B., Uncertainty Theory, 4-th, Springer, Berlin, Heidelberg, 2015, 487 pp. | DOI | MR | Zbl

[10] Pytyev Yu. P., Vozmozhnost kak alternativa veroyatnosti. Matematicheskiye i empiricheskiye osnovy, prilozheniya [Possibility as the Alternative of Probability. Mathematical and Emperical Grounds, Applications], Fizmatlit, Moscow, 2016, 600 pp. (in Russian)

[11] Sheng L., Zhu Y., Yan H., Wang K., “Uncertain optimal control approach for $CO_2$ mitigation problem”, Asian J. Control, 19:6 (2017), 1931–1942 | DOI | MR | Zbl

[12] Yao K., Uncertain Differential Equations, Springer, Berlin, Heidelberg, 2016, 158 pp. | DOI | MR | Zbl

[13] Zhu Y., Uncertain Optimal Control, Springer, Berlin, Heidelberg, 2019, 208 pp. | DOI | Zbl