Spectral expansion for singular beta Sturm–Liouville problems
Ural mathematical journal, Tome 10 (2024) no. 2, pp. 4-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study, beta Sturm–Liouville problems are discussed. For such equations, the spectral function is established in the singular case. A spectral expansion is given with the help of this function.
Keywords: Sturm–Liouville theory, Fractional derivatives and integrals, Spectral expansion
@article{UMJ_2024_10_2_a0,
     author = {Bilender P. Allahverdiev and H\"useyin Tuna and Y\"uksel Yal\c{c}inkaya},
     title = {Spectral expansion for singular beta {Sturm{\textendash}Liouville} problems},
     journal = {Ural mathematical journal},
     pages = {4--14},
     year = {2024},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a0/}
}
TY  - JOUR
AU  - Bilender P. Allahverdiev
AU  - Hüseyin Tuna
AU  - Yüksel Yalçinkaya
TI  - Spectral expansion for singular beta Sturm–Liouville problems
JO  - Ural mathematical journal
PY  - 2024
SP  - 4
EP  - 14
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a0/
LA  - en
ID  - UMJ_2024_10_2_a0
ER  - 
%0 Journal Article
%A Bilender P. Allahverdiev
%A Hüseyin Tuna
%A Yüksel Yalçinkaya
%T Spectral expansion for singular beta Sturm–Liouville problems
%J Ural mathematical journal
%D 2024
%P 4-14
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a0/
%G en
%F UMJ_2024_10_2_a0
Bilender P. Allahverdiev; Hüseyin Tuna; Yüksel Yalçinkaya. Spectral expansion for singular beta Sturm–Liouville problems. Ural mathematical journal, Tome 10 (2024) no. 2, pp. 4-14. http://geodesic.mathdoc.fr/item/UMJ_2024_10_2_a0/

[1] Allahverdiev B. P., Tuna H., Yalçınkaya Y., “Spectral expansion for singular conformable Sturm–Liouville problem”, Math. Commun., 25 (2020), 237–252 URL: https://hrcak.srce.hr/244270 | MR | Zbl

[2] Allahverdiev B. P., Tuna H., Yalçınkaya Y., “Conformable fractional Sturm–Liouville equation”, Math. Meth. Appl. Sci., 42:10 (2019), 3508–3526 | DOI | MR | Zbl

[3] Atangana A., Alqahtani R. T., “Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative”, Entropy, 18:2 (2016), 40 | DOI | MR

[4] Atangana A., Goufo E. F. D., “On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries”, BioMed Res. Int., 2014, 261383 | DOI

[5] Atangana A., Oukouomi Noutchie S. C., “Model of break-bone fever via beta-derivatives”, BioMed Res. Int., 2014, 523159 | DOI

[6] Aydemir K., Mukhtarov O. Sh., “A new type Sturm—Liouville problem with an abstract linear operator contained in the equation”, Quaest. Math., 45:12 (2022), 1931–1948 | DOI | MR | Zbl

[7] Cetinkaya F. A., “On a conformable fractional wave equation”, J. Natural App. Sci., 22:3 (2018), 1110–1113 | DOI | MR

[8] Gülşen T., Yılmaz E., Kemaloğlu H., “Conformable fractional Sturm–Liouville equation and some existence results on time scales”, Turkish J. Math., 42:3 (2018), 48, 1348–1360 | DOI | MR | Zbl

[9] Khalil R., Horani M. Al., Yousef A., Sababheh M., “A new definition of fractional derivative”, J. Computat. Appl. Math., 264 (2014), 65–70 | DOI | MR | Zbl

[10] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publ. Inc., New York, 1970, 393 pp. | MR

[11] Levitan B. M., Sargsjan I. S., Sturm–Liouville and Dirac Operators, Math. Appl. (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991, 350 pp. | DOI | MR

[12] Naimark M. A. Linear Differential Operators, 2nd, Ungar, New York, 1968, 156 pp. | MR | Zbl

[13] Yépez-Martínez H., Gómez-Aguilar J. F., Baleanu D., “Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion”, Optik, 155 (2018), 357–365 | DOI

[14] Wang W.-C., “Some notes on conformable fractional Sturm—Liouville Problems”, Boundary Value Probl., 2021 (2021), 103 | DOI | MR