Mots-clés : Time scale
@article{UMJ_2024_10_1_a9,
author = {Elena S. Mozhegova and Nikolai N. Petrov},
title = {A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales},
journal = {Ural mathematical journal},
pages = {112--122},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/}
}
TY - JOUR AU - Elena S. Mozhegova AU - Nikolai N. Petrov TI - A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales JO - Ural mathematical journal PY - 2024 SP - 112 EP - 122 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/ LA - en ID - UMJ_2024_10_1_a9 ER -
Elena S. Mozhegova; Nikolai N. Petrov. A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 112-122. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/
[1] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems: Contributions to the Int. Seminar ISAM-90, held in Gaussig (GDR), March 19–23, 1990, v. 59, Math. Res., De Gruyter, Berlin, Boston, 1990, 9–20 | DOI | MR
[2] Benchohra M., Henderson J., Ntouyas S., Impulsive Differential Equations and Inclusions, Hindawi Publishing, New York, 2006, 380 pp. | MR
[3] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob"ektov [Conflict Interaction of Groups of Controlled Objects], Udmurt State University, Izhevsk, 2009, 266 pp. (in Russian) | MR
[4] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003, 348 pp. | DOI | MR | Zbl
[5] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comput. Model., 43:1–2 (2006), 194–207 | DOI | MR | Zbl
[6] Chikrii A. A., Conflict-Controlled Processes, Kluwer Academic Publishers, Dordrecht, NL, 1997, 424 pp. | DOI | MR | Zbl
[7] Grigorenko N. L., Matematicheskie metody upravleniya neskol'kimi dinamicheskimi protsessami [Mathematical methods of control over multiple dynamic processes], Moscow State University, Moscow, 1990, 197 pp. (in Russian)
[8] Guseinov G. S., “Integration on time scales”, J. Math. Anal. Appl., 285:1 (2003), 107–127 | DOI | MR | Zbl
[9] Hilger S., “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | MR | Zbl
[10] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial'nye igry [Positional Differential Games], Nauka, 1974. 456 p. (in Russian), Moscow | MR
[11] Martins N., Torres D., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discuss. Math. Differ. Incl. Control Optim., 31:1 (2011), 23–37 | DOI | MR | Zbl
[12] Petrov N. N., “Controllability of autonomous systems”, Differ. Uravn., 4:4 (1968), 606—617 (in Russian) https://mi.mathnet.ru/eng/de328 | MR | Zbl
[13] Petrov N. N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dyn. Games Appl., 12:2 (2022), 632–642 | DOI | MR | Zbl
[14] Petrov N. N., “On a problem of pursuing a group of evaders in time scales”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021), 163–171 (in Russian) | DOI | MR
[15] Petrov N. N., “The problem of simple group pursuit with phase constraints in time scales”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 249–258 (in Russian) | DOI | MR | Zbl
[16] Petrov N. N., Mozhegova E. S., “On a simple pursuit problem on time scales of two coordinated evaders”, Chelyabinsk Phys. Math. J., 7:3 (2022), 277–286 (in Russian) | DOI | MR | Zbl
[17] Petrov N. N., Mozhegova E. S., “Simple pursuit problem with phase restrictions of two coordinated evaders on time scales”, Mat. Teor. Igr Pril., 14:4 (2022), 81—95 (in Russian) https://mi.mathnet.ru/eng/mgta314 | MR | Zbl