A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 112-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In finite-dimensional Euclidean space, we study the problem of a simple pursuit of two evaders by a group of pursuers in a given time scale. It is assumed that the evaders use the same control and do not move out of a convex polyhedral set. The pursuers use counterstrategies based on information on the initial positions and on the prehistory of the control of evaders. The set of admissible controls of each of the participants is a sphere of unit radius with its center at the origin, and the goal sets are the origin. The goal of the group of pursuers is the capture of at least one evader by two pursuers. In terms of the initial positions and parameters of the game, a sufficient condition for capture is obtained. The study is based on the method of resolving functions, which makes it possible to obtain sufficient conditions for solvability of the pursuit problem in some guaranteed time.
Keywords: Differential game, Group pursuit, Evader, Pursuer
Mots-clés : Time scale
@article{UMJ_2024_10_1_a9,
     author = {Elena S. Mozhegova and Nikolai N. Petrov},
     title = {A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales},
     journal = {Ural mathematical journal},
     pages = {112--122},
     year = {2024},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/}
}
TY  - JOUR
AU  - Elena S. Mozhegova
AU  - Nikolai N. Petrov
TI  - A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales
JO  - Ural mathematical journal
PY  - 2024
SP  - 112
EP  - 122
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/
LA  - en
ID  - UMJ_2024_10_1_a9
ER  - 
%0 Journal Article
%A Elena S. Mozhegova
%A Nikolai N. Petrov
%T A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales
%J Ural mathematical journal
%D 2024
%P 112-122
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/
%G en
%F UMJ_2024_10_1_a9
Elena S. Mozhegova; Nikolai N. Petrov. A two-fold capture of coordinated evaders in the problem of a simple pursuit on time scales. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 112-122. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a9/

[1] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems: Contributions to the Int. Seminar ISAM-90, held in Gaussig (GDR), March 19–23, 1990, v. 59, Math. Res., De Gruyter, Berlin, Boston, 1990, 9–20 | DOI | MR

[2] Benchohra M., Henderson J., Ntouyas S., Impulsive Differential Equations and Inclusions, Hindawi Publishing, New York, 2006, 380 pp. | MR

[3] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob"ektov [Conflict Interaction of Groups of Controlled Objects], Udmurt State University, Izhevsk, 2009, 266 pp. (in Russian) | MR

[4] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003, 348 pp. | DOI | MR | Zbl

[5] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comput. Model., 43:1–2 (2006), 194–207 | DOI | MR | Zbl

[6] Chikrii A. A., Conflict-Controlled Processes, Kluwer Academic Publishers, Dordrecht, NL, 1997, 424 pp. | DOI | MR | Zbl

[7] Grigorenko N. L., Matematicheskie metody upravleniya neskol'kimi dinamicheskimi protsessami [Mathematical methods of control over multiple dynamic processes], Moscow State University, Moscow, 1990, 197 pp. (in Russian)

[8] Guseinov G. S., “Integration on time scales”, J. Math. Anal. Appl., 285:1 (2003), 107–127 | DOI | MR | Zbl

[9] Hilger S., “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | MR | Zbl

[10] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial'nye igry [Positional Differential Games], Nauka, 1974. 456 p. (in Russian), Moscow | MR

[11] Martins N., Torres D., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discuss. Math. Differ. Incl. Control Optim., 31:1 (2011), 23–37 | DOI | MR | Zbl

[12] Petrov N. N., “Controllability of autonomous systems”, Differ. Uravn., 4:4 (1968), 606—617 (in Russian) https://mi.mathnet.ru/eng/de328 | MR | Zbl

[13] Petrov N. N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dyn. Games Appl., 12:2 (2022), 632–642 | DOI | MR | Zbl

[14] Petrov N. N., “On a problem of pursuing a group of evaders in time scales”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021), 163–171 (in Russian) | DOI | MR

[15] Petrov N. N., “The problem of simple group pursuit with phase constraints in time scales”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 249–258 (in Russian) | DOI | MR | Zbl

[16] Petrov N. N., Mozhegova E. S., “On a simple pursuit problem on time scales of two coordinated evaders”, Chelyabinsk Phys. Math. J., 7:3 (2022), 277–286 (in Russian) | DOI | MR | Zbl

[17] Petrov N. N., Mozhegova E. S., “Simple pursuit problem with phase restrictions of two coordinated evaders on time scales”, Mat. Teor. Igr Pril., 14:4 (2022), 81—95 (in Russian) https://mi.mathnet.ru/eng/mgta314 | MR | Zbl